Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề : \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2^2}{4x^2-2x}\)
\(=\frac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\frac{2x\left(3x-2\right)}{2x\left(2x-1\right)}+\frac{3x-4}{2x\left(2x-1\right)}\)
\(=\frac{2x-1-6x+3x+6x^2-4x+3x-4}{2x\left(2x-1\right)}\)
\(=\frac{-2x+6x^2-5}{2x\left(2x-1\right)}\)
Thay x = 1/234 vào tính là ra giá trị biểu thức nhé !!!
Phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)khi :
\(10x-13+4x-\left(4-x\right)\ne0\)
\(\Leftrightarrow10x-13+4x-4+x\ne0\)
\(\Leftrightarrow15x-17\ne0\)
\(\Leftrightarrow x\ne\frac{17}{15}\)
Phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)xác đinhk khi
\(\left(10x-13+4x\right)-\left(4-x\right)\ne0\)
\(\Leftrightarrow10x-13+4x-4+x\ne0\)
\(\Leftrightarrow15x-17\ne0\)
\(\Leftrightarrow15x\ne17\)
\(\Leftrightarrow x\ne\frac{17}{15}\)
Vậy phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)được xác đinh khi \(x\ne\frac{17}{15}\)
( -2x + 10 )( 2x + 1 ) = ( -2x + 10 )( 3x - 2 )
<=> ( -2x + 10 )( 2x + 1 ) - ( -2x + 10 )( 3x - 2 ) = 0
<=> ( -2x + 10 )( 2x + 1 - 3x + 2 ) = 0
<=> ( -2x + 10 )( 3 - x ) = 0
<=> -2x + 10 = 0 hoặc 3 - x = 0
<=> x = 5 hoặc x = 3
Vậy phương trình có tập nghiệm S = { 5 ; 3 }
\(\left(-2x+10\right)\left(2x+1\right)=\left(-2x+10\right)\left(3x-2\right)\)
\(\Leftrightarrow2x+1=3x-2\) ( rút gọn \(-2x+10\))
\(\Leftrightarrow2x-3x=-2-1\)
\(\Leftrightarrow-x=-3\)
\(\Rightarrow\)Vậy đẳng thức trên có tập nghiệm \(S=\left\{3\right\}\)
Ta có : \(x^2-6=x\)
\(\Leftrightarrow x^2-6-x=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;3\right\}\)
\(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;4\right\}\)
Vậy nghiệm chung của 2 phương trình là x = 3
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)- \left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy : Tập nghiệm của PT là S={-1;-4}
#H
\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)-\left(-x-1\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left(-x-1\right)\left[\left(x+7\right)-\left(-2x-5\right)\right]=0\)
\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=\left(-x-1\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}}\)
Vậy tập nghiệm của pt \(S=\left\{-1;-4\right\}\)
\(\left(3x+12\right)\left(3x-3\right)=\left(3x+12\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3\right)-\left(3x+12\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3-4x+5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(-x+2\right)=0\Leftrightarrow x=-4;x=2\)
Vậy tập nghiệm của phương trình là S = { -4 ; 2 }
( 3x + 12 )( 3x - 3 ) = ( 3x + 12 )( 4x - 5 )
<=> 9( x + 4 )( x - 1 ) - 3( x + 4 )( 4x - 5 ) = 0
<=> 3( x + 4 )[ 3( x - 1 ) - ( 4x - 5 ) ] = 0
<=> 3( x + 4 )( 3x - 3 - 4x + 5 ) = 0
<=> 3( x + 4 )( 2 - x ) = 0
<=> x = -4 hoặc x = 2
Vậy phương trình có tập nghiệm S = { -4 ; 2 }
\(\frac{x^3+3x^2-4x-12}{x^2+x-6}=\frac{x\left(x^2+x-6\right)+2x^2+2x-12}{x^2+x-6}=\frac{\left(x+2\right)\left(x^2+x-6\right)}{x^2+x-6}\)
\(=x+2\)
Ta có:\(A\div B=\frac{x^3+3x^2-4x-12}{x^2+x-6}\)
\(=\frac{x^3+x^2-6x-2x^2-2x+12}{x^2-2x+3x-6}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)}{x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x-6\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-2\right)\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=x-2\)
( 3x + 6 )( -x - 9 ) = ( 3x + 6 )( x - 3 )
<=> ( 3x + 6 )( -x - 9 ) - ( 3x + 6 )( x - 3 ) = 0
<=> ( 3x + 6 )( -x - 9 - x + 3 ) = 0
<=> ( 3x + 6 )( -2x - 6 ) = 0
<=> 3x + 6 = 0 hoặc -2x - 6 = 0
<=> x = -2 hoặc x = -3
Vậy phương trình có tập nghiệm S = { -2 ; -3 }
Cho \(x=1\).Khi đó PT ẩn x \(f\left(x;y\right)=0\)tương đương với :
\(\left(2-4y+2\right)\left(5+2y-4\right)=0\)
\(\Leftrightarrow\left(4-4y\right)\left(1+2y\right)=0\)
\(\Leftrightarrow4\left(1-y\right)\left(1+2y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}1-y=0\\1+2y=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy \(y\in\left\{1;-\frac{1}{2}\right\}\)thì PT ẩn x \(f\left(x;y\right)=0\)nhận \(x=1\)làm nghiệm
Vì x = 1 là nghiệm phương trình nên
Thay x = 1 vào phương trình trên ta được :
PT <=> \(\left(2-4y+2\right)\left(5+2y-4\right)=\left(4-4y\right)\left(1+2y\right)\)
Đặt \(\left(4-4y\right)\left(1+2y\right)=0\Leftrightarrow y=1;y=-\frac{1}{2}\)
Đăng lại đi bạn bị lỗi rồi