Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ : \(x-1\ne0\)
=> \(x\ne1\)
TH1 : \(x-2\ge0\left(x\ge2\right)\)
=> \(\left|x-2\right|=x-2=1\)
=> \(x=3\left(TM\right)\)
- Thay x = 3 vào biểu thức P ta được :
\(P=\frac{3+2}{3-1}=\frac{5}{2}\)
TH2 : \(x-2< 0\left(x< 2\right)\)
=> \(\left|x-2\right|=2-x=1\)
=> \(x=1\left(KTM\right)\)
Vậy giá trị của P là \(\frac{5}{2}\) .
a) \(P=\frac{x+2}{x-1}\) \(\left(ĐKXĐ:x\ne1\right)\)
Ta có: \(\left|x-2\right|=1\text{⇔}\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) (loại x = 1 vì x ≠ 1)
Thay \(x=3\) vào P, ta có:
\(P=\frac{3+2}{3-2}=\frac{5}{1}=5\)
Vậy P = 5 tại x = 3.
b) \(Q=\frac{x-1}{x}+\frac{2x+1}{x^2+x}=\frac{x-1}{x}+\frac{2x+1}{x\left(x+1\right)}=\frac{x^2-1}{x\left(x+1\right)}+\frac{2x+1}{x\left(x+1\right)}\) (ĐKXĐ: x ≠ 0, x ≠ -1)
\(=\frac{x^2+2x}{x\left(x+1\right)}=\frac{x\left(x+2\right)}{x\left(x+1\right)}=\frac{x+2}{x+1}\)
Bài 1 :
Ta có : \(\frac{x^2+x+1}{x^2+1}=0\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}=0\)
Ta thấy \(\left\{{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\\x^2+1>0\end{matrix}\right.\)
=> \(\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{x^2+1}>0\)
Vậy phương trình vô nghiệm .
Bài 3 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}m-2\ne0\\m\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}m\ne2\\m\ne0\end{matrix}\right.\)
Ta có : \(A=\frac{m+1}{m-2}-\frac{1}{m}\)
=> \(A=\frac{\left(m+1\right)m}{\left(m-2\right)m}-\frac{m-2}{m\left(m-2\right)}\)
=> \(A=\frac{m^2+m-m+2}{\left(m-2\right)m}=\frac{m^2+2}{m\left(m-2\right)}\)
Ta có : \(B=\frac{m+2}{m-2}+\frac{1}{m}\)
=> \(B=\frac{\left(m+2\right)m}{\left(m-2\right)m}+\frac{m-2}{m\left(m-2\right)}\)
=> \(B=\frac{m^2+2m+m-2}{\left(m-2\right)m}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
c, Thay A = 1 ta được phương trình :\(\frac{m^2+2}{m\left(m-2\right)}=1\)
=> \(m^2+2=m\left(m-2\right)\)
=> \(-2m=2\)
=> \(m=-1\) ( TM )
Vậy m có giá trị bằng 1 khi A = 1 .
b, - Để A = B thì : \(\frac{m^2+2}{m\left(m-2\right)}=\frac{m^2+3m-2}{m\left(m-2\right)}\)
=> \(m^2+2=m^2+3m-2\)
=> \(3m=4\)
=> \(m=\frac{4}{3}\)
Vậy với A = B thì m có giá trị là 4/3 .
d, Ta có : A + B = 0 .
=> \(\frac{m^2+2}{m\left(m-2\right)}+\frac{m^2+3m-2}{m\left(m-2\right)}=0\)
=> \(2m^2+3m=0\)
=> \(m\left(2m+3\right)\)=0
=> \(\left[{}\begin{matrix}m=0\\m=-\frac{3}{2}\end{matrix}\right.\)
Vậy m = 0 hoăc m = -3/2 khi A + B = 0 .
Bài 1 :
a/ ĐKXĐ : \(a\ne0;-1\)
Ta có :
\(M=\left(\frac{1}{a}+\frac{a}{a+1}\right)-\frac{a}{a^2+a}\)
\(=\left(\frac{a+1}{a\left(a+1\right)}-\frac{a^2}{a\left(a+1\right)}\right)-\frac{a}{a\left(a+1\right)}\)
\(=\frac{a-a^2+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}\)
\(=\frac{1-a^2}{a\left(a+1\right)}\)
\(=\frac{\left(1-a\right)\left(1+a\right)}{a\left(a+1\right)}\)
\(=\frac{1-a}{a}\)
Vậy....
c/ Ta có : \(a+1=0\Leftrightarrow a=-1\) (loại)
Vậy....
Bài 2 :
a/ ĐKXĐ : \(x\ne0;3;-3\)
Ta có :
\(A=\left(\frac{x^2-3}{x^2-9}+\frac{1}{x-3}\right):\frac{x}{x-3}\)
\(=\left(\frac{x^2-3}{\left(x-3\right)\left(x+3\right)}+\frac{x+3}{\left(x-3\right)\left(x+3\right)}\right).\frac{x-3}{x}\)
\(=\frac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{x}\)
\(=\frac{x^2+x}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{x}\)
\(=\frac{x\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{x}\)
\(=\frac{x+1}{x+3}\)
Vậy....
b/ \(A=3\)
\(\Leftrightarrow\frac{x+1}{x+3}=3\)
\(\Leftrightarrow x+1=3x+9\)
\(\Leftrightarrow2x=-8\Leftrightarrow x=-4\)
Vậy...
5)
a)
Có 3x+y = 1
\(\Rightarrow x+x+x+y=1\)
Áp dụng bất đẳng thức bunhiacopxki ta có :
\(\left(x^2+x^2+x^2+y^2\right)\left(1^2+1^2+1^2+1^2\right)\ge\left(x+x+x+y\right)^2\)
\(\Rightarrow3x^2+y^{2^{ }}.4\ge\left(3x+y\right)^2\)
\(\Rightarrow3x^2+y^2\ge\dfrac{1}{4}\)
b)
Áp dụng bất đẳng thức AM - GM ta có :
\(\left[{}\begin{matrix}a^2+1^2\ge2a\\b^2+1^2\ge2b\\c^2+1^2\ge2c\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a+1\right)^2\ge4a^{ }\\\left(b+1\right)^2\ge4b^{ }\\\left(c+1\right)^2\ge4c^{ }\end{matrix}\right.\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a^{ }.4b.4c^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64a^{ }bc^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64abc\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64\)
\(\Rightarrow\left(a+1\right)^{ }\left(b+1\right)^{ }\left(c+1\right)^{ }\ge8\) \(\left(đpcm\right)\)
3)
Sửa đề \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
Đặt b + c - a = x , a+c-b = y , a+b-c= z
\(\Rightarrow\left[{}\begin{matrix}2a=y+z\\2b=x+z\\2c=x+y\end{matrix}\right.\)
Có :
\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
\(\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
\(\Rightarrow\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)
Áp dụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)
\(\Rightarrow\) \(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)
\(\Rightarrow2\left(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\right)\ge6\)
\(\Rightarrow\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\) \(\left(đpcm\right)\)
Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine
Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến
Bài 2:
a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)
\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)
b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)
Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên
Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1
\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)
c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)
\(\Leftrightarrow3y-1>2y+3\)
\(\Leftrightarrow y>4\)
Vậy....
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
a) \(A=\frac{x-3}{4x-8}\left(ĐKXĐ:x\ne2\right).\)
Ta có:
\(\left|2x-1\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4:2\\x=\left(-2\right):2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(KTM\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
+ Thay \(x=-1\) vào biểu thức A ta được:
\(A=\frac{\left(-1\right)-3}{4.\left(-1\right)-8}\)
\(\Rightarrow A=\frac{-4}{\left(-4\right)-8}\)
\(\Rightarrow A=\frac{-4}{-12}\)
\(\Rightarrow A=\frac{1}{3}.\)
Vậy giá trị của biểu thức A tại \(x=-1\) là: \(\frac{1}{3}.\)
b) Rút gọn B:
\(B=\frac{3}{x+2}-\frac{x}{x-2}+\frac{x^2+3}{x^2-4}\)
\(B=\frac{3}{x+2}-\frac{x}{x-2}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)
\(B=\frac{3.\left(x-2\right)}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)
\(B=\frac{3x-6}{\left(x-2\right).\left(x+2\right)}-\frac{x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)
\(B=\frac{3x-6}{\left(x-2\right).\left(x+2\right)}+\frac{-\left(x^2+2x\right)}{\left(x-2\right).\left(x+2\right)}+\frac{x^2+3}{\left(x-2\right).\left(x+2\right)}\)
\(B=\frac{3x-6-x^2-2x+x^2+3}{\left(x-2\right).\left(x+2\right)}\)
\(B=\frac{x-3}{\left(x-2\right).\left(x+2\right)}.\)
Chúc bạn học tốt!
a) A = a 2 – 2 ab + b 2 . b) B = m 2 . c) C = 8 t 3 .