Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
Với m=−1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)
Với m≠−1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx
f(x)=0f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0Δ′=m2−2m(m+1)≥0
⇔−m2−2m≥0⇔m(m+2)≤0⇔−m2−2m≥0⇔m(m+2)≤0
⇔−2≤m≤0⇔−2≤m≤0
Tóm lại để f(x)=0f(x)=0 có nghiệm thì m∈[−2;0]
a/ Pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
\(\Leftrightarrow m^2+4m-5< 0\Rightarrow-5< m< 1\)
b/ Pt có 2 nghiệm lớn hơn -1 \(\Leftrightarrow x_1\ge x_2>-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-\left(m^2+4m-5\right)\ge0\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6-6m\ge0\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le1\\m^2+4m-5+2m-2+1>0\\2\left(m-1\right)>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le1\\m^2+6m-6>0\\m>0\end{matrix}\right.\) \(\Rightarrow-3+\sqrt{15}< m\le1\)
c/
Pt có 2 nghiệm đều lớn hơn 1 \(\Leftrightarrow x_1\ge x_2>1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=6-6m\ge0\\\left(x_1-1\right)\left(x_2-1\right)>0\\\frac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le1\\x_1x_2-\left(x_1+x_2\right)+1>0\\\frac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le1\\m^2+4m-5-2m+2+1>0\\m-1>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le1\\m^2+2m-2>0\\m>2\end{matrix}\right.\)
Không tồn tại m thỏa mãn
d/
Đặt \(f\left(x\right)=x^2-2\left(m-1\right)x+m^2+4m-5\)
Để pt có 2 nghiệm thỏa mãn \(x_1< 1< x_2\)
\(\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1< 0\) (vô lý)
Vậy ko tồn tại m thỏa mãn yêu cầu
1.
\(\Delta'=1-m>0\Rightarrow m< 1\)
Để pt có 2 nghiệm t/m đề bài
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
2. Để pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)
Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)
Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)
3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)
Để pt có 2 nghiệm thỏa mãn đề bài
\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)
\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)
a: TH1: m=2
Pt sẽ là 3x-4=0
=>x=4/3(loại)
TH2: m<>2
\(\text{Δ}=\left(5-m\right)^2-4\left(m-2\right)\left(m-6\right)\)
\(=m^2-10m+25-4\left(m^2-8m+12\right)\)
\(=m^2-10m+25-4m^2+32m-48\)
\(=-3m^2+22m-23\)
Để phương trình có hai nghiệm phân biệt thì -3m^2+22m-23>0
=>\(\dfrac{11-2\sqrt{13}}{3}< x< \dfrac{11+2\sqrt{13}}{3}\)
a: |x1-x2|=2
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
\(\Leftrightarrow\left(\dfrac{m-5}{m-2}\right)^2-4\cdot\dfrac{m-6}{m-2}=4\)
\(\Leftrightarrow\dfrac{\left(m-5\right)^2-4\left(m^2-8m+12\right)}{\left(m-2\right)^2}=4\)
=>\(m^2-10m+25-4m^2+32m-48=4m^2-16m+16\)
=>-7m^2+38m-39=0
hay \(m=\dfrac{19\pm2\sqrt{22}}{7}\)
c: TH1: x1<x2<0<1
=>x1+x2<0 và x1x2>0
=>(m-5)/(m-2)<0 và (m-6)/(m-2)>0
\(\Leftrightarrow\left\{{}\begin{matrix}2< m< 5\\\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
TH2: 0<x1<x2<1
=>x1x2<1 và 0<x1+x2<2
=>0<m-5/m-2<2 và m-6/m-2<1
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5-2m+4}{m-2}< 0\\\dfrac{m-6-m+2}{m-2}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+1}{m-2}>0\\\dfrac{-4}{m-2}< 0\end{matrix}\right.\)
=>m>2
Để tam thức đổi dấu 2 lần
\(\Leftrightarrow x^2-\left(m+2\right)x+8m+1=0\) có 2 nghiệm pb
\(\Leftrightarrow\Delta=\left(m+2\right)^2-4\left(8m+1\right)>0\)
\(\Leftrightarrow m^2-28m>0\Rightarrow\left[{}\begin{matrix}m>28\\m< 0\end{matrix}\right.\)
Để phương trình đã cho có hai nghiệm trái dấu khi:
a c = m 2 - m - 6 < 0 ⇔ - 2 < m < 3
Chọn đáp án D.