Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
> M x -pi/3 O 1 2 N P
Biểu diễn dao động bằng véc tơ quay.
Tần số dao động: $f=\dfrac{5\pi}{2\pi}=2,5(hz)$
Ban đầu véc tơ quay xuất phát từ M, trong 1 giây đầu tiên, véc tơ quay quay được 2,5 vòng và đến N.
Chất điểm qua li độ x = 1cm ứng với véc tơ quay qua M và P.
Từ đó ta dễ dàng đếm được, trong 1 giây đầu, vật qua li độ x = 1cm tổng cộng 6 lần.
x=Acos(\(\omega t+\varphi\))
Tại thời điểm t=0, ta có:
\(\frac{A}{2}=Acos\left(\varphi\right)\) \(\Rightarrow\)\(\varphi=-\frac{\pi}{6}\)(do vật chuyển động theo chiều dương)
\(\Rightarrow\) \(x=Acos\left(\omega t-\frac{\pi}{6}\right)\)
cái này mình tưởng phải bằng: x=Acos(\(\omega t+\frac{\pi}{3}\)) chứ.
Vật đi qua vị trí cân bằng theo chiều dương :
\(\left\{{}\begin{matrix}x_0=0\\v_0>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A\cdot cos\varphi=0\\-\omega A\cdot sin\varphi>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cos\varphi=0\\sin\varphi< 0\end{matrix}\right.\)
\(\Leftrightarrow\varphi=\dfrac{-\pi}{2}\)
\(x=Acos\left(\omega t-\dfrac{\pi}{2}\right)\)
=> B
\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\); \(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)
\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)
Ta có:
\(\left\{{}\begin{matrix}\omega A=20\pi\\\omega^2A=40\pi^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\omega=2\pi\left(rad\text{/}s\right)\\A=10\left(cm\right)\end{matrix}\right.\)
\(t=0\left\{{}\begin{matrix}\cos\varphi=\dfrac{x}{A}=-\dfrac{1}{2}\\v>0\Rightarrow sin\varphi< 0\end{matrix}\right.\Rightarrow\varphi=-\dfrac{2\pi}{3}\)
Vậy phương trình dao động là: \(x=10\cos\left(2\pi t-\dfrac{2\pi}{3}\right)cm\)
Đáp án A