Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(=1001\cdot\overline{abc}\)
\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13
Đêm rồi không biết c/m chia hết cho 3 :)
b) \(\overline{aaa}=111\cdot a\)chia hết cho a
c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)
sửa đề
\(a,\overline{abcabc}⋮7;11;13\)
=\(\overline{abc}.1000+\overline{abc}\)
=\(\overline{abc}\left(1000+1\right)\)
= \(\overline{abc}.1001\)
= \(\overline{abc}.7..11.13\)
=> \(\overline{abcabc}⋮7;11;13\)
\(b,\overline{aaa}:a=111\)
\(=>\overline{aaa}⋮a\)
\(c,\overline{abc}⋮\overline{abc}\)
Do \(\overline{abc}=\overline{abc}\)
=> \(\overline{abc}⋮\overline{abc}\)
Ta có
ab + ba =10a+b+10b+a
=(10a+a)+(10b+b)
=11a+11b=11(a+b)
=> ab + ba chia hết cho 11.
ta có:
ab+ba=(a.10+b)+(b.10+a)=a.11+b.11
vì 11chia hết cho 11 => (a+b).11 chia hết cho 11
=> ab+ba chia hết cho 11
k nha
\(\overline{abc}⋮27\)
\(\Rightarrow\overline{abc0}⋮27\)
\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)
\(\Rightarrow999a+a+\overline{bc0}⋮27\)
\(\Rightarrow27.37a+\overline{bca}⋮27\)
do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)
Để \(\overline{3x4827}⋮11\) thì \(3-x+4-8+2-7⋮11\)
\(\Leftrightarrow1-x⋮11\Leftrightarrow x=1\)
Vậy số đó là \(314827\)
Để \(\overline{x2013x}⋮88\Leftrightarrow\overline{x2013x}⋮11;\overline{x2013x}⋮8\)
\(\overline{x2013x}⋮8\Leftrightarrow\overline{13x}⋮8\Leftrightarrow x=6\)
Thay vào ta thấy \(620136⋮11\)
Vậy số đó là \(620136\)
cảm ơn