Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
Ta có: \(2020=x\Rightarrow2019=x-1\)
Thay vào ta được:
\(D=x^{2020}+\left(x-1\right)^{2019}+\left(x-1\right)^{2018}+...+\left(x-1\right)x+1\)
\(D=x^{2020}+x^{2020}-x^{2019}+x^{2019}-x^{2018}+...+x^2-x+1\)
\(D=2x^{2020}-x+1\)
\(D=2\cdot2020^{2020}-2020+1\)
Bạn xem lại đề nhé
x = 2020 => 2019 = x - 1
Thế vào D ta được
D = x2020 + ( x - 1 )x2019 + ( x - 1 )x2018 + ... + ( x - 1 )x + 1
= x2020 + x2020 - x2019 + x2019 - x2018 + ... + x2 - x + 1
= 2x2020 - x + 1
= 2.20202020 - 2020 + 1
= 2.20202020 - 2019 ( chắc đề sai (: )
1.Tìm điều kiện xác định của phương trình:
a) 1x2+11x2+1 -4xx4xx =0 (1)
b) 1x2−11x2−1 -2020 (2)
c) x2020x−2019x2020x−2019 + x−2021x2+1 (2)
Giải:
a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x
Vậy điều kiện để phương trình (1) xác định là x ≠ 0.
b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0
⇔ \(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1
Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.
c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x
Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
đâu có đâu bạn ???
Mình dùng công cụ công thức của hoc24.vn mà
Bạn đợi chút nó sẽ load ra liền
Bạn chứng minh cái này : a2n+1 + b2n+1 \(⋮\)a + b ; an - bn \(⋮\)a - b
Ta có : 20182019 + 20202019 = ( 20182019 + 1 ) + ( 20202019 - 1 )
20182019 + 1 \(⋮\)( 2018 + 1 ) = 2019 ; 20202019 - 1 \(⋮\)( 2010 - 1 ) = 2019
\(\Rightarrow\) 20182019 + 20202019 \(⋮\) 2019
Theo đề bài ta có :
\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)
\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)
Thay \(x=1\) vào (1) ta có :
\(F\left(1\right)=-4\)
\(\Leftrightarrow1+a+b+c=-4\)
\(\Leftrightarrow a+b+c=-5\)
Thay \(x=-2\) vào (2) ta có :
\(F\left(-2\right)=5\)
\(\Leftrightarrow-8+4a-2b+c=5\)
\(\Leftrightarrow4a-2b+c=13\)
Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)
....
NX: VT ≥ 0 nên VP = 2020x – 2020 ≥ 0 ó x ≥ 1
Khi đó x − 1 2020 > 0 , x − 2 2020 > 0 , ... , x − 2019 2020 > 0
Phương trình trở thành
x − 1 2020 + x − 2 2020 + x − 3 2020 + ... + x − 2019 2020 = 2020 x − 2020
ó 2019x - ( 1 2020 + 2 2020 + ... + 2019 2020 ) = 2020x – 2020
ó 2019x - 1 + 2 + 3 + ... + 2019 2020 = 2020x – 2020
ó 2019x - ( 1 + 2019 ) .2019 2.2020 = 2020x – 2020
ó 2019x - 2019/2 = 2020x – 2020
ó 2020 - 2019/2 = 2020x – 2019x
ó x = 2021/2 (TM)
Vậy phương trình có nghiệm x = 2021/2
Đáp án cần chọn là: A