Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài như trên
\(\Leftrightarrow\left(a+b+c+d\right)^2-8\left(ac+bd\right)>0\)
ziết lại zế trái của BĐT trên dưới dạng một tam giác tam thức bậc 2 theo biến số a
\(f\left(a\right)=a^2+2\left(b-3c+d\right)a+\left(b+c+d\right)^2-8bd\)
ta có
\(\Delta'=\left(b-3c+d\right)^2-\left[\left(b+c+d\right)^2-8bd\right]=8\left(b-c\right)\left(d-c\right)\)
zì \(b>c>d=>\Delta'< 0=>f\left(a\right)>0\left(\forall a\right)\)
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
Mệnh đề B và D đều sai
Mệnh đề B chỉ đúng khi a;b;c;d dương
Mệnh đề D thì sai rõ ràng
Do a,b,c,d > 0 nên \(b+c+d>0,c+d+a>0,d+a+b>0,a+b+c>0\)
Áp dụng BĐT AM - GM ta có :
\(\frac{a}{b+c+b}+\frac{b+c+d}{a}\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{a}}=2\)
Tương tự ta có được điều phải chứng minh
Khi đó \(P\ge2+2+2+2=8\)
Nếu a> b >0 và c> d > 0 thì
* a+ c > b + d
* Từ a > b > 0 và c > 0 nên ac > bc (1)
Lại có c > d và b > 0 nên bc > bd (2)
Từ(1) và (2) suy ra: ac > bd.
* Ta có:
a b > b b = 1 ; d c < c c = 1 ⇒ a b > 1 > d c
Vậy khẳng định C sai.