Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
> O x M 7 -7 π/3
Quỹ đạo chuyển động là 14 cm → A = 7 cm.
Tại thời điểm ${t_0}$ chất điểm ở vị trí M có pha ban đầu là –π/3; độ lớn gia tốc cực đại tại biên.
→ từ M đến biên lần thứ 3 thì ∆φ = π/3 + 2π = 7π/3 rad.
→ t = ∆φ/ω = 7/6 s và s = 3,5 + 28 = 31,5 cm
→ v = s/t = 27 cm/s.
Ta có: \(\dfrac{\pi x}{4}=\dfrac{2\pi x}{\lambda}\Rightarrow \lambda = 8cm\)
Chu kì: \(T=1s\)
Tốc độ truyền sóng: \(v=\dfrac{\lambda}{T}=8cm/s\)
Độ lệch pha giữa hai dao động là ∆φ = 0,75π – 0,5π = 0,25π rad.
Dòng điện xoay chiều khiến cho dây chịu tác dụng của lực từ, và sẽ dao động theo phương vuông góc với đường sức từ, với tần số 50Hz, hay ω=2πf=100πω=2πf=100π và T=0.02sT=0.02s
Khoảng cách giữa 2 điểm dừng (ứng với 1 bụng sóng) là λ/2=vT/2=12×0.02/2=0.12λ/2=vT/2=12×0.02/2=0.12
Có 6 bụng sóng, vậy thì chiều dài sợi dây là: 6λ2=0.12×6=0.72(m)6λ2=0.12×6=0.72(m)
Đáp án là A. 72cm
Ta có I = 5 A; ${Z_L} = \omega L = 100\pi .0,4 = 40\Omega .$
→ ${U_L} = I{Z_L}$ = 5.40 = 200 V.
Ô tô chuyển động có giá tốc nên trong hệ quy chiếu ô tô thì vật chịu một gia tốc bằng nhưng ngược hướng với \(a=\frac{\sqrt{3}}{3}g\)
Tại vị trí cân bằng thì vật nghiêng một góc
\(\tan\alpha=\frac{a}{9}=\frac{\sqrt{3}}{3}\)
\(\alpha=90^o\)
Khi kéo nghiêng dây góc \(39^o\) thì các biên độ có thể là \(9^o\) hoặc \(69^o\) (góc quá lớn có thể sẽ không dao động điều hòa)
Tính trong góc biên độ nhỏ thì biên độ cong là
\(\text{A=α0.l=0,157m(αtínhtheorad)}\)
Ô tô chuyển động có giá tốc nên trong hệ quy chiếu ô tô thì vật chịu một gia tốc bằng nhưng ngược hướng với a=3√3ga=33g
Tại vị trí cân bằng thì vật nghiêng một góc
tanα=ag=3√3tanα=ag=33
α=30oα=30o
Khi kéo nghiêng dây góc 39o39o thì các biên độ có thể là 9o9o hoặc 69o69o (góc quá lớn có thể sẽ không dao động điều hòa)
Tính trong góc biên độ nhỏ thì biên độ cong là
A=α0.l=0,157m(αtínhtheorad)
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)
V=x’=6πcos(πt+π/2)cm/s
Tại thời điểm t=0,5s→v=6πcm/s
Chọn đáp án A