Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có biểu thức :
Cường độ dòng điện hiệu dụng :
Điện trở của quạt :
Tổng trở mới của quạt ( sau khi mắc thêm điện trở ) là :
Khi mắc vào mạch có điện áp 220V thì :
Đáp án A
Phương pháp: Cường độ dòng điện hiệu dụng I = U/Z
Đoạn mạch gồm RLC mắc nối tiếp: I = U R 2 + Z L − Z C 2 ( 1 )
Khi nối tắt tụ: I = U R 2 + Z L 2
Từ (1) và (2) ⇒ U R 2 + Z L − Z C 2 = U R 2 + Z L 2 ⇒ Z L − Z C = Z L ( l o a i ) Z L − Z C = − Z L
⇒ 2 Z L = Z C ⇔ 2 ω L = 1 ω C ⇒ ω 2 L C = 0,5
Đáp án A
Phương pháp: Sử dụng hệ thức của định luật Ôm và công thức tính công suất tiêu thụ
Cách giải:
Giả sử cuộn dây thuần cảm:
Ta có, khi R = R 2 công suất tiêu thụ trên biến trở cực đại
Khi đó ta có: R 2 = | Z L - Z C | = 40 - 25 = 15 W
Mặt khác: P R 2 = U 2 2 R 2 = 120 2 2.15 = 480 ≠ 160
⇒ điều giả sử ban đầu là sai
⇒ Cuộn dây không thuần cảm có điện trở r
- Ta có:
+ Ban đầu khi mắc vào hai đầu A, M một ắc quy có suất điện động E = 12V, điện trở trong r 1 = 4 W thì I 1 = 0 , 1875
Theo định luật Ôm, ta có: I 1 = E R b + r = E R 1 + r + r 1 → R 1 + r 1 + r = E I 1 = 64 → R 1 + r = 60 Ω ( 1 )
+ Khi mắc vào A,B một hiệu điện thế u = 120 2 cos 100 π t , R = R 2 thì công suất tiêu thụ trên biến trở cực đại và bằng 160W
Ta có:
Công suất trên biến trở R đạt cực đại khi R 2 2 = r 2 + Z L − Z C 2 ( 2 )
Mặt khác, ta có:
Công suất trên R 2 : P = U 2 ( R 2 + r ) 2 + Z L − Z C 2 R 2 = 160 W → R 2 ( R 2 + r ) 2 + Z L − Z C 2 = 160 120 2 = 1 90
90 R 2 = 2 R 2 2 + 2 r R → R 2 + r = 45
Kết hợp với (2) ta được: R 2 2 = ( 45 − R 2 ) 2 + 15 2 → R 2 = 25 Ω , r = 20 Ω
Với r = 20W thay vào (1) ⇒ R 1 = 60 - 20 = 40 Ω
→ R 1 R 2 = 40 25 = 1,6
Chọn đáp án A
+ Mạch RC có tổng trở Z = R 2 + Z C 2 = R 2
+ Hệ số công suất của đoạn mạch: cosφ = R Z = 1 2 = 2 2
Đáp án A
n (vòng/phút) |
f |
ω |
Z L |
Z C |
|
2n (vòng/phút) |
2f |
2 ω |
2 Z L |
Z C 2 |
+ Khi tốc độ quay của roto là n (vòng/phút):
+ Khi tốc độ quay của roto là 2n (vòng/phút):
Đáp án C
Phương pháp: Mạch điện R, L, C mắc nối tiếp có ω thay đổi
Cách giải:
+ Khi ω = ω 0 công suất trên mạch đạt cực đại ω 0 2 = 1 L C P m ax = U 2 R = 732 ⇒ U 2 = 732 R ( * )
+ Khi ω = ω 1 và ω = ω 2 ; ω 1 – ω 2 = 120 π thì công suất tiêu thụ trên đoạn mạch bằng nhau:
P 1 = P 2 = P = 300 W ⇔ U 2 R R 2 + Z L 1 − Z C 1 2 = U 2 R R 2 + Z L 2 − Z C 2 2 ⇒ ω 1 ω 2 = 1 L C = ω 0 2
+ Ta có:
Z L 1 − Z C 1 = ω 1 L − 1 ω 1 C 1 = ω 1 L − 1 ω 0 2 ω 2 C = ω 1 L − ω 2 ω 0 2 C = ω 1 L − ω 2 1 L C C = ω 1 L − ω 2 L = ω 1 − ω 2 L = 120 π 1,6 π = 192
⇒ Z L 1 − Z C 1 = 192 ( ∗ ∗ )
+ Công suất tiêu thụ:
P = U 2 R R 2 + Z L 1 − Z C 1 2 = 300 ⇒ 300 R 2 + 300 Z L 1 − Z C 1 2 = U 2 R ( ∗ ∗ ∗ )
Từ (*) ; (**) ; (***) ⇒ 300 R 2 + 300.192 2 = 732 R 2 ⇒ R = 160 Ω
Đáp án C
+ Quạt được mắc vào nguồn điện u 1 = 1100 2 cos 100 πt V
+ Mắc nối tiếp quạt với tụ điện và mắc vào nguồn điện u 2 = 220 2 cos 100 πt V thì quạt vẫn sáng bình thường => I’ = I