K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2014

Cường độ dòng điện tức thời qua tụ:  \(i=\frac{\Delta q}{\Delta t}=C\frac{\Delta u}{\Delta t}\)

Do 2 tụ mắc song song nên điện áp tức thời  2 đầu mỗi tụ như nhau. Do vậy  \(\frac{i_1}{i_2}=\frac{C_1}{C_2}=\frac{1}{2}\Rightarrow i_2=2i_1=2.0,04=0,08A\).

Cường độ dòng điện qua cuộn cảm là: i=i1+i2=0,04+0,08=0,12A

Do năng lượng của tụ: \(W_đ=\frac{1}{2}C.u^2\), nên năng lượng điện tỉ lệ với điện dung C.

Do đó, năng lượng của tụ C1 là: 13,5.10-6 / 2 = 6,75.10-6 (J)

Năng lượng điện của mạch: W = 13,5.10−6+6,75.10-6 =20,25.10-6

Năng lượng điện từ của mạch: \(W=W_đ+W_t=W_{tmax}\Rightarrow 20,25.10^{-6}+\frac{1}{2}.5.10^{-3}.(0,12)^2=\frac{1}{2}.5.10^{-3}.I_0^2\)

=>\(I_0=0,15A\)

Đáp án D

31 tháng 5 2019

Chú ý trong mạch dao động \(i_1\perp u_1;i_2\perp u_2\)

Mặt khác ta có độ lệch pha giữa hai \(i_1;i_2\):\(t_2-t_1=\frac{\pi}{2}\sqrt{LC}=\frac{T}{4}\Rightarrow\Delta\varphi=\frac{T}{4}.\frac{2\pi}{T}=\frac{\pi}{2}\)

=> \(i_1\perp i_2\)

i i u u 1 1 2 2

Nhìn vào đường tròn ta thấy \(i_1\perp i_2,u_1\perp u_2\); \(i_1\) ngược pha \(u_2\) và ngược lại.

\(\frac{i_1^2}{I^2_0}+\frac{u^2_1}{U_0^2}=1;\frac{i_1^2}{I^2_0}+\frac{i^2_2}{I_0^2}=1;\frac{i_1^2}{I^2_0}+\frac{u^2_2}{U_0^2}=1;\frac{i_2^2}{I^2_0}+\frac{u^2_1}{U_0^2}=1;\)

\(U_0=\frac{I_0}{\omega}\Rightarrow I_0=\omega\sqrt{U_0}=\frac{1}{\sqrt{LC}}\sqrt{U_0}\)

Dựa vào các phương trình trên ta thấy chỉ có đáp án D là sai.

17 tháng 8 2016

Sử sụng hệ thức: \left ( \frac{i}{I_{0}} \right )^{2}+\left ( \frac{q}{q_{0}} \right )^{2}= 1

Thay số và giải hệ phương trình trìm I0 và q0

Tần số góc: ω  = \frac{I_{0}}{q_{0}} = 50 (rad/s)

29 tháng 5 2016

Hướng dẫn:

\(U_{AB}=U_C=2\) (1)

\(U_{BC}^2=U_r^2+U_L^2=3\) (2)

\(U_{AC}^2=U_r^2+(U_L-U_C)^2=1\) (3)

Giải hệ 3 pt trên sẽ tìm đc \(U_r\) và \(U_L\)

Chia cho \(I\) sẽ tìm được \(r\) và \(Z_L\)

 

14 tháng 12 2015

\(T = 2\pi .\sqrt{LC} = 2.10^{-5}s.\)

Thời gian từ lúc hiệu điện thế trên tụ cực đại U0 đến lúc hiệu điện thế trên tụ \(+\frac{U_0}{2}\) tính dựa vào đường tròn

U 0 +U 0 2

\(\cos \varphi = \frac{U_)/2}{U_0}= \frac{1}{2}=> \varphi= \frac{\pi}{3}. \)

\( t = \frac{\varphi}{\omega}= \frac{\pi/3}{2\pi/T}= \frac{T}{6}= \frac{1}{3}.10^{-5}s.\)

 

12 tháng 5 2016

Hỏi đáp Vật lý

Xem t = 0 là lúc cả hai mạch bắt đầu dao động 

Phương trình hiệu điện thế trên 2 tụ C1 và C2 lần lượt có dạng 

\(\begin{cases}u_1=12cos\left(\omega t\right)\left(V\right)\\u_2=6cos\left(\omega t\right)\left(V\right)\end{cases}\)

Độ chênh lệch Hiệu điện thế: \(\Delta u=u_1-u_2=6cos\left(\omega t\right)\left(V\right)\)

\(u_1-u_2=6cos\left(\omega t\right)=\pm3\Rightarrow cos\left(\omega t\right)=\pm0,5\Rightarrow cos\left(\frac{2\pi}{T}t\right)=\pm0,5\)

\(\Rightarrow\Delta t_{min}=\frac{T}{6}=\frac{10^{-6}}{3}s\)

12 tháng 5 2016

 

\(\frac{10^{-6}}{3}\)s

21 tháng 11 2017

đáp án D mà