Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Tần số biến thiên của năng lượng từ trường:
f T = 2 f = 2 2π LC = 1 π . 5.10 − 9 .0 , 5.10 − 3 = 2 , 013.10 5 Hz = 201 , 3 kHz
\(\lambda=\frac{v}{f}\) có \(v=\cos st\) đẻ bước song tăng 2 lần thì \(f\) giảm 2 lần có \(f=\frac{1}{2.\pi.\sqrt{LC}}\) suy ra \(C\) tăng 4 lần
để \(C\) tăng phải mắc song song \(C_0=C_1+C_2\)
vậy đáp án là \(3C\)
\(\rightarrow C\)
Ta có : ADCT : \(I_0=U_0\sqrt{\frac{C}{L}}\) ( Từ công thức tính năng lượng điện từ trong mạch \(W=W_{Cmax}=W_{Lmax}\)
Nghĩa là :\(\frac{L.\left(I_0\right)^2}{2}=\frac{C.\left(U_0\right)^2}{2}\))
\(\Rightarrow I_0=5.\sqrt{\frac{8.10^{-9}}{2.10^{-4}}}=\text{0.0316227766}\left(A\right)\)\(\Rightarrow I=\frac{I_0}{\sqrt{2}}=\text{0.022360677977}\left(A\right)\)
Mà \(P=r.I^2\Rightarrow r=\frac{6.10^{-3}}{5.10^{-4}}=12\left(\Omega\right)\Rightarrow D\)
1. Cường độ dòng điện cùng pha với điện áp -> \(Z_L=Z_C\)
Nếu nối tắt tụ C thì mạch chỉ còn R nối tiếp với L.
\(\tan\varphi=\frac{Z_L}{R}=\tan\frac{\pi}{3}=\sqrt{3}\Rightarrow Z_L=\sqrt{3}.50=50\sqrt{3}\Omega\)
\(\Rightarrow Z_C=50\sqrt{3}\Omega\)
2. Cuộn dây phải có điện trở R
Ta có giản đồ véc tơ
Ud Uc Um 120 120 Ur 45 0
Từ giản đồ ta có: \(U_C=\sqrt{120^2+120^2}=120\sqrt{2}V\)
\(U_R=120\cos45^0=60\sqrt{2}V\)
Cường độ dòng điện: \(I=\frac{U_C}{Z_C}=\frac{120\sqrt{2}}{200}=0,6\sqrt{2}V\)
Công suất: \(P=I^2R=I.U_R=0,6\sqrt{2}.60\sqrt{2}=72W\)
Khi trong mạch xảy ra cộng hưởng thì ω = ${\omega _0} = \dfrac{1}{{\sqrt {LC} }}$.
Đáp án A
+ Ta có: Z L = 2pf.L = 10 W.
+
W.
® Z C = 40 W.
+ Mà W ® F.
+ Tần số dao động riêng của mạch LC là:
Hz = 100 kHz.
Đáp án A
Phương pháp: Sử dụng công thức tính tần số dao động của mạch LC
Cách giải: Ta có: