Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.R=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)
\(R=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+xy-1}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]:\left[\dfrac{xy-1-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)
\(R=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1}:\dfrac{xy-1-x\sqrt{y}+\sqrt{x}+\sqrt{xy}+1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}}{xy-1}\)
\(R=\dfrac{-2\sqrt{x}-2}{xy-1}:\dfrac{-2x\sqrt{y}-2\sqrt{xy}}{xy-1}\)
\(R=\dfrac{-2\left(\sqrt{x}+1\right)}{xy-1}.\dfrac{xy-1}{-2\left(x\sqrt{y}+\sqrt{xy}\right)}\)
\(R=\dfrac{\sqrt{x}+1}{x\sqrt{y}+\sqrt{xy}}\)
\(b.C=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
\(C=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(C=\dfrac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(C=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
\(C=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(c.M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{\sqrt{x}+x}{\sqrt{x}}=\dfrac{\sqrt{x}+1+x}{\sqrt{x}}\)
\(a.\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)=\dfrac{x+1+\sqrt{x}}{x\sqrt{x}-1}.\dfrac{x\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
\(b.ĐK:x>2\) ( thường là những bài rút gọn sẽ kèm theo ĐK nhé , mình thêm như vậy , nếu không bạn chia TH ra )
\(\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{\dfrac{1}{x^2}-\dfrac{2}{x}+1}}=\dfrac{\sqrt{x-1}-1+\sqrt{x-1}+1}{1-\dfrac{1}{x}}=\dfrac{2\sqrt{x-1}}{1-\dfrac{1}{x}}\)
\(c.\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=1\)
\(d.Tuong-tự\)
bạnn giải giúp mik lun câu d lun nha?!:)))))cảm ơn nhiw!:))))))
a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}:\left[\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}:\left(x-1\right)^2=\dfrac{\sqrt{x}}{x+1}\)
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
a) Đk: \(\left\{{}\begin{matrix}x\ne1\\x\ne4\\x>0\end{matrix}\right.\)
* giải pt: \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x-1}}\right)=0\Leftrightarrow x=4\left(L\right)\)
Vậy x >4 thỏa bpt đã cho
Kl: \(x\in\left(4;+\infty\right)\)
b) chưa giải nhưng chắc cũng tương tự vậy thôi.
Quy trình để giải mọi bất phương trình:
+ Tìm tập xác định
+ giải PHƯƠNG TRÌNH (không có chữ "bất" nhé)
+ Xét dấu ---> kết luận
\(F=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy}\cdot\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y+2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\cdot xy=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)
Bài 1:
\(M=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(x-1\right)}{\sqrt{x}}\)
=2
Bài 2:
\(P=\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
1:
\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
2: \(=\dfrac{1+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{1+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\sqrt{\dfrac{1-x^2}{1+x}}=\sqrt{1-x}\)