K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

a) \(\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\left|y\right|=44\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=\pm4\\x=\pm2\end{matrix}\right.\)

Vậy ...

2 tháng 2 2019

\(\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3\left|x\right|-12\left|y\right|=-54\left(1\right)\\3\left|x\right|+\left|y\right|=10\left(2\right)\end{matrix}\right.\)

Cộng (1) và (2), ta được phương trình: \(-11\left|y\right|=-44\Leftrightarrow\left[{}\begin{matrix}y=4\\y=-4\end{matrix}\right.\)

Thay $y=4$ vào $(2)$, ta được:

\(3\left|x\right|+\left|4\right|=10\\ \Leftrightarrow3\left|x\right|=6\\ \Leftrightarrow\left|x\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Thay $y=-4$ vào $(2)$, ta được:

\(3\left|x\right|+\left|-4\right|=10\\ \Leftrightarrow3\left|x\right|+4=10\\ \Leftrightarrow3\left|x\right|=6\\ \Leftrightarrow\left|x\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy...

Giải hệ phương trình 1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\) 2....
Đọc tiếp

Giải hệ phương trình

1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)

6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)

7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)

8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)

9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)

10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)

12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)

13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)

14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)

15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)

16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)

17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)

18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ

11
28 tháng 11 2019

1,ĐK: \(x,y\ne-2\)

HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

=> \(2xy\left(x+2\right)\left(y+2\right)=0\)

<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))

<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)

Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2

Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)

2, ĐK: \(y\ne-1\)

HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)

<=> 6(x+3)=4-x

<=> \(14=-7x\)

<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)

<=>y=1\(\)( tm)

Vậy hpt có một nghiệm duy nhất (-2,1)

3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)

PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

<=> (x-y)(x+y+1)=0

<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)

Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))

4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))

<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).

28 tháng 11 2019

10.

\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2018

Câu hỏi lỗi rồi :))

30 tháng 12 2022

d: =>6y+2-4x+4=5 và 15y+5-8x+8=9

=>-4x+6y=-1 và -8x+15y=-4

=>x=-3/4; y=-2/3

c: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}3y-15+2x-6=0\\7x-28+3y+3y-3=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=21\\7x+6y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{19}{3}\end{matrix}\right.\)

7 tháng 3 2019

\(\Leftrightarrow\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

Trừ 2 vế của hpt, ta được: \(11\left|y\right|=44\Leftrightarrow y=\pm4\)

*Với y=4, thay vào pt dưới, ta được:

\(3\left|x\right|=6\Leftrightarrow x=\pm2\)

*Với y=-4, thay vào pt dưới, ta được:

\(3\left|x\right|=14\Leftrightarrow\left|x\right|=\frac{14}{3}\)\(\Leftrightarrow x=\pm\frac{14}{3}\)

Vậy (x;y)=\(\left(-2;4\right);\left(2;4\right);\left(\frac{14}{3};-4\right);\left(\frac{-14}{3};-4\right)\)

7 tháng 3 2019

\(\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\left|y\right|=44\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\3\left|x\right|+4=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\3\left|x\right|=10-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\3\left|x\right|=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)

NV
23 tháng 6 2019

Câu 1:

\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x+y\right)\left(x-y\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=5\left(x+y\right)\left(x-y\right)^2\)

\(\Leftrightarrow x^2+y^2=5\left(x-y\right)^2\)

\(\Leftrightarrow2x^2-5xy+2y^2=0\)

\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\x=2y\end{matrix}\right.\)

TH1: \(y=2x\Rightarrow3x\left(x^2+4x^2\right)=15\Leftrightarrow x^3=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

TH2: \(x=2y\Rightarrow3y\left(4y^2+y^2\right)=15\Rightarrow y^3=1\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

NV
23 tháng 6 2019

Câu 2:

\(\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

\(\Leftrightarrow x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)

\(\Rightarrow\left(y+3\right)^2+2y^2=y+3-4y\)

\(\Leftrightarrow y^2+3y+2=0\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=2\\y=-2\Rightarrow x=1\end{matrix}\right.\)

3 tháng 4 2020

a,\(\left\{{}\begin{matrix}x=35\left(y+2\right)\\x=50\left(y-1\right)\end{matrix}\right.\)

suy ra :35(y+2)=50(y-1)

=>35y+70=50y-50

=>y=8

=>x=350

vậy :\(\left\{{}\begin{matrix}x=350\\y=8\end{matrix}\right.\)

b.\(\left\{{}\begin{matrix}y=2x-3\\y=x-1\end{matrix}\right.\)

suy ra: 2x-3=x-1

=>x=2

=>y=1

vậy \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

c.\(\left\{{}\begin{matrix}\left(x+14\right).\left(y-2\right)=xy\\\left(x-4\right).\left(y-1\right)=xy\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x+14=0\\-x-y=0\end{matrix}\right.\)

vậy:\(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

d,\(\left\{{}\begin{matrix}y=\frac{6-x}{4}\\y=\frac{4x-5}{3}\end{matrix}\right.\)

x=2

y=1

vậy...

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)