K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

\(\Leftrightarrow\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

Trừ 2 vế của hpt, ta được: \(11\left|y\right|=44\Leftrightarrow y=\pm4\)

*Với y=4, thay vào pt dưới, ta được:

\(3\left|x\right|=6\Leftrightarrow x=\pm2\)

*Với y=-4, thay vào pt dưới, ta được:

\(3\left|x\right|=14\Leftrightarrow\left|x\right|=\frac{14}{3}\)\(\Leftrightarrow x=\pm\frac{14}{3}\)

Vậy (x;y)=\(\left(-2;4\right);\left(2;4\right);\left(\frac{14}{3};-4\right);\left(\frac{-14}{3};-4\right)\)

7 tháng 3 2019

\(\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\left|y\right|=44\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\3\left|x\right|+4=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\3\left|x\right|=10-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\3\left|x\right|=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=2\end{matrix}\right.\)

2 tháng 2 2019

a) \(\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left|x\right|+12\left|y\right|=54\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11\left|y\right|=44\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=\pm4\\x=\pm2\end{matrix}\right.\)

Vậy ...

2 tháng 2 2019

\(\left\{{}\begin{matrix}\left|x\right|+4\left|y\right|=18\\3\left|x\right|+\left|y\right|=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3\left|x\right|-12\left|y\right|=-54\left(1\right)\\3\left|x\right|+\left|y\right|=10\left(2\right)\end{matrix}\right.\)

Cộng (1) và (2), ta được phương trình: \(-11\left|y\right|=-44\Leftrightarrow\left[{}\begin{matrix}y=4\\y=-4\end{matrix}\right.\)

Thay $y=4$ vào $(2)$, ta được:

\(3\left|x\right|+\left|4\right|=10\\ \Leftrightarrow3\left|x\right|=6\\ \Leftrightarrow\left|x\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Thay $y=-4$ vào $(2)$, ta được:

\(3\left|x\right|+\left|-4\right|=10\\ \Leftrightarrow3\left|x\right|+4=10\\ \Leftrightarrow3\left|x\right|=6\\ \Leftrightarrow\left|x\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy...

28 tháng 1 2021

a, Đặt \(\hept{\begin{cases}\frac{1}{x}=u\\\frac{1}{y}=v\end{cases}}\left(u;v\ne0\right)\)

\(\Leftrightarrow\hept{\begin{cases}u+v=\frac{5}{6}\\\frac{1}{6}u+\frac{1}{5}v=\frac{3}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}u=\frac{5}{6}-v\left(1\right)\\\frac{1}{6}u+\frac{1}{5}v=\frac{3}{20}\left(2\right)\end{cases}}\)

Thay (1) vào (2) ta được : \(\frac{1}{6}\left(\frac{5}{6}-v\right)+\frac{1}{5}v=\frac{3}{20}\)

\(\Leftrightarrow\frac{5}{36}-\frac{v}{6}+\frac{v}{5}=\frac{3}{20}\)

\(\Leftrightarrow\frac{-v}{6}+\frac{v}{5}=\frac{3}{20}-\frac{5}{36}\Leftrightarrow\frac{v}{30}=\frac{1}{90}\Leftrightarrow v=\frac{1}{3}\)(*)

hay \(v=\frac{1}{3}=\frac{1}{y}\Rightarrow y=3\)

Thay (*) vào (1) ta được : \(u=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}\)hay \(u=\frac{1}{2}=\frac{1}{x}\Rightarrow x=2\)

Vậy x = 2 ; y = 3 

28 tháng 1 2021

b, \(\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{x-y}=\frac{5}{x+y}\left(1\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\left(2\right)\end{cases}}\)

Xét phương trình 1 ta có : \(\frac{4}{x-y}-\frac{5}{x+y}=0\)

\(\Leftrightarrow\frac{4\left(x+y\right)-5\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=0\Leftrightarrow4x+4y-5x+5y=0\)

\(\Leftrightarrow-x+9y=0\Leftrightarrow x=9y\)(*) 

Thay vào 2 ta có : \(\frac{40}{9y+y}+\frac{40}{9y-y}=9\)

\(\Leftrightarrow\frac{4}{y}+\frac{5}{y}=9\Leftrightarrow\frac{9}{y}=9\Leftrightarrow y=1\)

Thay y = 1 vào (*) ta có : \(x=9.1=9\)

Vậy x = 9 ; y = 1

NV
13 tháng 5 2020

b/ \(\left\{{}\begin{matrix}x^4+y^4=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)^2-2x^2y^2=97\\xy\left(x^2+y^2\right)=78\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+y^2=a>0\\xy=b\end{matrix}\right.\) với \(a\ge2b\) hệ trở thành:

\(\left\{{}\begin{matrix}a^2-2b^2=97\\ab=78\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2-2b^2=97\\b=\frac{78}{a}\end{matrix}\right.\)

\(\Rightarrow a^2-2\left(\frac{78}{a}\right)^2=97\)

\(\Leftrightarrow a^4-97a^2-12168=0\Rightarrow\left[{}\begin{matrix}a^2=169\\a^2=-72\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=13\Rightarrow b=6\\a=-13< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\xy=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2=13\\y=\frac{6}{x}\end{matrix}\right.\)

\(\Rightarrow x^2+\frac{36}{x^2}=13\Leftrightarrow x^4-13x^2+36=0\) \(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=2\\x=-3\Rightarrow y=-2\\x=2\Rightarrow y=3\\x=-2\Rightarrow y=-3\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ \(\left\{{}\begin{matrix}xy+1+x+y=10\\\left(x+y\right)\left(xy+1\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=10\\ab=1\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm:

\(t^2-10t+1=0\) \(\Rightarrow\left[{}\begin{matrix}t=5+2\sqrt{6}\\t=5-2\sqrt{6}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=5+2\sqrt{6}\\xy=4-2\sqrt{6}\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm:

\(t^2-\left(5+2\sqrt{6}\right)t+4-2\sqrt{6}=0\) (bấm máy, số xấu quá)

TH2: \(\left\{{}\begin{matrix}x+y=5-2\sqrt{6}\\xy=4+2\sqrt{6}\end{matrix}\right.\)

Ta có \(\left(5-2\sqrt{6}\right)^2-4\left(4+2\sqrt{6}\right)=33-28\sqrt{6}< 0\) nên vô nghiệm

NV
10 tháng 7 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)

\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)

2/ ĐKXĐ:...

Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)

4/ Bạn tự giải

4 tháng 10 2019

b) Lấy pt đầu trừ pt dưới thu được:

\(x^3-y^3+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)

Do \(x^2+xy+y^2=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2>0\)

Do đó x = y. Thay vào pt đầu thu được:

\(x^3-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)

c) Lấy pt trên trừ pt dưới:

\(2\left(x^2-y^2\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-3=0\end{matrix}\right.\)

Auto làm nốt:D

P/s: Is that true?

Giải hệ phương trình 1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\) 2....
Đọc tiếp

Giải hệ phương trình

1. \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}x^2-2xy-6=6y+2x\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

3.\(\left\{{}\begin{matrix}x^2-y=y^2-x\\x^2-x=y+3\end{matrix}\right.\)

4.\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\end{matrix}\right.\)

6.\(\left\{{}\begin{matrix}x^3\left(x-y\right)+x^2y^2=1\\x^2\left(xy+3\right)-3xy=3\end{matrix}\right.\)

7.\(\left\{{}\begin{matrix}x^2+3y-6x=0\\9x^2-6xy^2+y^4-3y+9=0\end{matrix}\right.\)

8.\(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x+y-xy=2y^2-x^2\end{matrix}\right.\)

9.\(\left\{{}\begin{matrix}8x^3-y=y^3-2x\\x^2+y^2=x+2y\end{matrix}\right.\)

10.\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

11.\(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+2\right)=4\left(y+2\right)\\x^2+y^2+\left(y+2\right)\left(x+y+2\right)=4\left(y+2\right)\end{matrix}\right.\)

12. \(\left\{{}\begin{matrix}x^2+7=4y^2+4y\\x^2+3xy+2y^2+x+y=0\end{matrix}\right.\)

13. \(\left\{{}\begin{matrix}x^2+y^2=5\\x^3+2y^3+\left(x-5\right)^2+\left(y+5\right)^2=55\end{matrix}\right.\)

14. \(\left\{{}\begin{matrix}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{matrix}\right.\)

15.\(\left\{{}\begin{matrix}x^2+y^2+4x+2y=3\\x^2+7y^2-4xy+6y=13\end{matrix}\right.\)

16. \(\left\{{}\begin{matrix}x^2-5xy+x-5y^2=42\\7xy+6y^2+42=x\end{matrix}\right.\)

17.\(\left\{{}\begin{matrix}x^2+xy+y^2=13\\x^4+x^2y^2+y^4=91\end{matrix}\right.\)

18.\(\left\{{}\begin{matrix}x^2=\left(2-y\right)\left(2+y\right)\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

Đây là các bài hệ trong đề thi chuyên toán mong mọi người giúp vì mình bận quá nên không thể làm hết được ạ

11
28 tháng 11 2019

1,ĐK: \(x,y\ne-2\)

HPT<=> \(\left\{{}\begin{matrix}x\left(x+2\right)+y\left(y+2\right)=\left(x+2\right)\left(y+2\right)\left(1\right)\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x^2\left(x+2\right)^2+2xy\left(x+2\right)\left(y+2\right)+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\\x^2\left(x+2\right)^2+y^2\left(y+2\right)^2=\left(x+2\right)^2\left(y+2\right)^2\end{matrix}\right.\)

=> \(2xy\left(x+2\right)\left(y+2\right)=0\)

<=>\(2xy=0\) (do x+2 và y+2 \(\ne0\))

<=> \(\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Tại x=0 thay vào (1) có: \(y\left(y+2\right)=2\left(y+2\right)\) <=> y= \(\pm2\) => y=2 (vì y khác -2)

Tại y=0 thay vào (1) có: \(x\left(x+2\right)=2\left(x+2\right)\) => x=2

Vậy HPT có 2 nghiệm duy nhất (2,0),(0,2)

2, ĐK: \(y\ne-1\)

HPT <=> \(\left\{{}\begin{matrix}x^2=2\left(x+3\right)\left(y+1\right)\left(1\right)\\\frac{3x^2}{y+1}=4-x\end{matrix}\right.\)

=> \(\frac{6\left(3+x\right)\left(y+1\right)}{y+1}=4-x\)

<=> 6(x+3)=4-x

<=> \(14=-7x\)

<=> \(x=-2\) thay vào (1) có \(4=2\left(y+1\right)\)

<=>y=1\(\)( tm)

Vậy hpt có một nghiệm duy nhất (-2,1)

3,\(\left\{{}\begin{matrix}x^2-y=y^2-x\left(1\right)\\x^2-x=y+3\left(2\right)\end{matrix}\right.\)

PT (1) <=> \(\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

<=> (x-y)(x+y+1)=0

<=>\(\left[{}\begin{matrix}x=y\\y=-x-1\end{matrix}\right.\)

Tại x=y thay vào (2) có \(y^2-y=y+3\) <=> \(y^2-2y-3=0\) <=> (y-3)(y+1)=0 <=> \(\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Tại y=-1-x thay vào (2) có: \(x^2-x=-1-x+3\) <=> \(x^2=2\) <=> \(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=-1-\sqrt{2}\\y=-1+\sqrt{2}\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (3,3),(-1,-1), ( \(\sqrt{2},-1-\sqrt{2}\)),( \(-\sqrt{2},-1+\sqrt{2}\))

4,\(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=5\left(2\right)\end{matrix}\right.\)(đk:\(x\ne0,y\ne0\))

<=> \(\left\{{}\begin{matrix}\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)=\frac{9}{2}\\\left(y+\frac{1}{y}\right)\left(x+\frac{1}{x}\right)=5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=u\\y+\frac{1}{y}=v\end{matrix}\right.\)

\(\left\{{}\begin{matrix}u+v=\frac{9}{2}\\uv=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\v\left(\frac{9}{2}-v\right)=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left(v-\frac{5}{2}\right)\left(v-2\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}u=\frac{9}{2}-v\\\left[{}\begin{matrix}v=\frac{5}{2}\\v=2\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\\\left[{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=\frac{5}{2}\\u=2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)\left(y-\frac{1}{2}\right)=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=2\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

Tại \(\left\{{}\begin{matrix}v=2\\u=\frac{5}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x+\frac{1}{x}=\frac{5}{2}\\y+\frac{1}{y}=2\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(x-2\right)\left(x-\frac{1}{2}\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\\y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có 4 nghiệm (1,2),( \(1,\frac{1}{2}\)) ,( 2,1),(\(\frac{1}{2},1\)).

28 tháng 11 2019

10.

\(\left\{{}\begin{matrix}2x^2-3xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2xy-xy+y^2+x-y=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x-y+1\right)=0\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\y=2x+1\end{matrix}\right.\\x^2+x+1=y^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=y^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=y^2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x+1=x^2\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x^2+x+1=\left(2x+1\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\3x\left(x+1\right)=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=1\\\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2x+1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}y=2x+1\\x=-1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=-1\\\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

4 tháng 4 2017

Bài giải:

a) Đặt x + y = u, x - y = v, ta có hệ phương trình (ẩn u, v):

nên

Suy ra hệ đã cho tương đương với:

b) Thu gọn vế trái của hai phương trình:



29 tháng 1 2021

Bài giải:

a) Đặt x + y = u, x - y = v, ta có hệ phương trình (ẩn u, v):

nên

 ⇔  ⇔ ⇔ 

⇔  ⇔ 

Suy ra hệ đã cho tương đương với:

⇔  ⇔