K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

quy luật lạ z:v lúc đầu nhân lúc sau cộng:v

11 tháng 5 2022

mk 0 bt ;-;

cái này trong đề thi cũa mk

bây h thi xg òi ;vv

6 tháng 7 2017

\(A=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(1+\dfrac{1}{99.101}\right)\)

\(A=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}....\dfrac{10000}{99.101}\)

\(A=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}....\dfrac{100^2}{99.101}\)

\(A=\dfrac{2.3.4...100}{1.2.3....99}.\dfrac{2.3.4....100}{3.4.5....101}\)

\(A=100.\dfrac{2}{101}=\dfrac{200}{101}\)

Vậy A = \(\dfrac{200}{101}\)

Chúc học tốt!!

11 tháng 7 2017

\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)

\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)

\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)

\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)

\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)

\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)

\(B=\dfrac{4.9.16.100}{3.8.15.99}\)

\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)

\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)

\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)

7 tháng 3 2018

\(A=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{24}\right).\left(1+\dfrac{1}{3.5}\right).....\left(1+\dfrac{1}{2014.2016}\right)\)

\(A=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{4060225}{2014.2016}\)

\(A=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{2015^2}{2014.2016}\)

\(A=\dfrac{2.3.4.5...2015}{1.2.3...2014}.\dfrac{2.3.4...2015}{3.4.5...2016}\)

\(A=2015.\dfrac{2}{2016}=2015.\dfrac{1}{1008}=\dfrac{2015}{1008}\)

Vậy \(A=\dfrac{2015}{1008}\)

Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)

\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)

22 tháng 4 2017

(1+1/1.3)...(1+1/2016.2018)

=(1.3+1/1.3)...(2016.2018+1/2016.2018)

=(2.2/1.3)...(2017.2017/2016.2018)

=(2...2017).(2..2017)/(1.2.....2016).(3...2018)

=2017.2/2018

=2017.2/1006.2

=2017/1006

thông cảm nha :))

2 tháng 5 2023

Ta có \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2-1+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).

Từ đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\)\(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\)\(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\)\(1+\dfrac{1}{4.6}=\dfrac{5^2}{4.6}\);...; \(1+\dfrac{1}{2022.2024}=\dfrac{2023^2}{2022.2024}\).

Suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2022.2024}\right)\)

\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}...\dfrac{2023^2}{2022.2024}\)

\(=\dfrac{2.2023}{2024}\) \(=\dfrac{2023}{1012}\)