Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)
\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)
\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)
\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)
\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)
\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)
\(B=\dfrac{4.9.16.100}{3.8.15.99}\)
\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)
\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)
\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)
\(A=\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{24}\right).\left(1+\dfrac{1}{3.5}\right).....\left(1+\dfrac{1}{2014.2016}\right)\)
\(A=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{4060225}{2014.2016}\)
\(A=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{2015^2}{2014.2016}\)
\(A=\dfrac{2.3.4.5...2015}{1.2.3...2014}.\dfrac{2.3.4...2015}{3.4.5...2016}\)
\(A=2015.\dfrac{2}{2016}=2015.\dfrac{1}{1008}=\dfrac{2015}{1008}\)
Vậy \(A=\dfrac{2015}{1008}\)
(1+1/1.3)...(1+1/2016.2018)
=(1.3+1/1.3)...(2016.2018+1/2016.2018)
=(2.2/1.3)...(2017.2017/2016.2018)
=(2...2017).(2..2017)/(1.2.....2016).(3...2018)
=2017.2/2018
=2017.2/1006.2
=2017/1006
thông cảm nha :))
Sửa đề: A=(1+1/1*3)(1+1/2*4)*...*(1+1/2019*2021)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\dfrac{2}{1}\cdot\dfrac{3}{2}\cdot...\cdot\dfrac{2020}{2019}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2020}{2021}=2020\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)
\(A=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(1+\dfrac{1}{99.101}\right)\)
\(A=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}....\dfrac{10000}{99.101}\)
\(A=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}....\dfrac{100^2}{99.101}\)
\(A=\dfrac{2.3.4...100}{1.2.3....99}.\dfrac{2.3.4....100}{3.4.5....101}\)
\(A=100.\dfrac{2}{101}=\dfrac{200}{101}\)
Vậy A = \(\dfrac{200}{101}\)
Chúc học tốt!!