K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:

d(I; d) = R

Ta có :  R = d(I; d) =  = 

Phương trình đường tròn cần tìm là:

(x +1)2 + (y – 2)     =>( x +1)2 + (y – 2)

<=> 5x2 + 5y2 +10x – 20y +21 = 0

30 tháng 5 2020

5x2 + 5y2 +10x – 20y +6 mà

12 tháng 4 2016

Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ x,y của tâm I có thể là x= yI  hoặc x= -yI

Đặt x = a thì ta có hai trường hợp I(a ; a) hoặc I(-a ; a). Ta có hai khả năng:

Vì I nằm trên đường thẳng 4x – 2y – 8 = 0 nên với I(a ; a)  ta có:

4a – 2a – 8 = 0     => a = 4

Đường tròn cần tìm có tâm I(4; 4) và bán kính R = 4 có phương trình:

(x – 4 )2 + (y – 4)2  = 42

x2 + y2 – 8x – 8y + 16 = 0

+ Trường hợp I(-a; a):

-4a – 2a – 8 = 0    => a = 

Ta được đường tròn có phương trình:

 +  = 

12 tháng 4 2016

Đường thẳng 4x-2y-8=0 chuyển về dạng tham số ta được 
x=t 
y=2t-4 
Gọi I(t; 2t-4) thuộc đthẳng 
Do đường tròn tiếp xúc với 2 trục tọa độ lên khoảng cách đến 2 trục là = nhau 
-->t=2t-4 
t=4 
Vậy đường tròn có dạng : (x-4)^2 + (y-4)^2 = 16 

 
20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

Vì đường tròn cần tìm tiếp xúc với hai trục tọa độ nên các tọa độ xI ,yI của tâm I có thể là xI = yI hoặc xI = -yI

Đặt xI = a thì ta có hai trường hợp I(a ; a) hoặc I(-a ; a). Ta có hai khả năng:

Vì I nằm trên đường thẳng 4x – 2y – 8 = 0 nên với I(a ; a) ta có:

4a – 2a – 8 = 0 => a = 4

Đường tròn cần tìm có tâm I(4; 4) và bán kính R = 4 có phương trình:

(x - 4 )2 + (y – 4)2 = 42

x2 + y2 - 8x – 8y + 16 = 0

+ Trường hợp I(-a; a):

-4a - 2a - 8 = 0 => a =

Ta được đường tròn có phương trình:

+ =

30 tháng 3 2017

o a b I x y

gọi pt đường trọng cần tìm là: \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\left(C\right)\)

với I(a; b)

(C) tiếp xúc với 2 trục tọa độ \(\Rightarrow a=b=R\Rightarrow\left(C\right)\)co dang \(\left(x-a\right)^2+\left(y-a\right)^2=a^2\left(1\right)\)

lại có I(a;b) \(\in\) 4x-2y-8=0 \(\Rightarrow4a-2a-8=0\Rightarrow a=4\)

thay a = 4 vao (1) \(\Rightarrow\left(C\right)\left(x-4\right)^2+\left(y-4\right)^2=16\)

30 tháng 3 2017

a) Ta tìm bán kính R2 = IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52

Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52

b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:

d(I; d) = R

Ta có : R = d(I; d) = \(=\)

Phương trình đường tròn cần tìm là:

(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =

<=> 5x2 + 5y2 +10x – 20y +21 = 0

c) Tâm I là trung điểm của AB, có tọa độ :

x = \(\dfrac{1+7}{2}\) = 4; y = \(\dfrac{1+5}{2}\) = 3 => I(4; 3)

AB = \(2\sqrt{13}\) => R =\(\sqrt{13}\)

=> (x -4 )2 + (y – 3)2 =13

8 tháng 12 2019

a) (C) có tâm I và đi qua M nên bán kính R = IM

Ta có: Giải bài 2 trang 83 SGK hình học 10 | Giải toán lớp 10

Vậy đường tròn (C) : (x + 2)2 + (y – 3)2 = 52.

b) (C) tiếp xúc với (Δ) : x – 2y + 7 = 0

⇒ d(I; Δ) = R

Mà Giải bài 2 trang 83 SGK hình học 10 | Giải toán lớp 10

Vậy đường tròn (C) : Giải bài 2 trang 83 SGK hình học 10 | Giải toán lớp 10

c) (C) có đường kính AB nên (C) có :

+ tâm I là trung điểm của AB

Giải bài 2 trang 83 SGK hình học 10 | Giải toán lớp 10

Vậy đường tròn (C) : (x – 4)2 + (y – 3)2 = 13.

NV
9 tháng 4 2021

Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)

\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 49\).

b) Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}}  = 5\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)

c) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( { - 2;1} \right)\)

Bán kính đường tròn là: \[R = IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( { - 3 - 1} \right)}^2}}  = \sqrt {17} \]

Phương trình đường tròn là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 17\)

d) Bán kính đường tròn là: \(R = \frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\sqrt 5 \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 20\)