K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

11 tháng 6 2018

1) \(4x^2-12x+y^2-4y+13\)

\(=\left(4x^2-12x+9\right)+\left(y^2-4y+4\right)\)

\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(y^2-2.2y+4\right)\)

\(=\left(2x-3\right)^2+\left(y-2\right)^2\)

2) \(x^2+y^2+2y-6x+10\)

\(=\left(x^2+2y+1\right)+\left(y^2-6x+9\right)\)

\(=\left(x+1\right)^2+\left(y-3\right)^2\)

3) \(4x^2+9y^2-4x+6y+2\)

\(=\left(4x^2-4x+1\right)+\left(9y^2+6y+1\right)\)

\(=\left(2x-1\right)^2+\left(3y+1\right)^2\)

4) \(y^2+2y+5-12x+9x^2\)

\(\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)\)

\(=\left(y+1\right)^2+\left(3x-2\right)^2\)

5) \(x^2+26+6y+9y^2-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2+6y+1\right)\)

\(=\left(x-5\right)^2+\left(3y+1\right)^2\)

18 tháng 8 2020

WTF đăng một loạt vầy ai dám làm @@

Mấy bài này trong sách bài tập cx có bài mẫu

tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

15 tháng 3 2020

\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)

\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)

\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)

\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)

\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)

15 tháng 3 2020

cảm ơn nha

29 tháng 6 2017

1) \(4x^2+4x+1=\left(2x+1\right)^2\)

2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)

3)\(-x^2+10x-25=-\left(x-5\right)^2\)

4)\(1+12x+36x^2=\left(1+6x\right)^2\)

5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)

6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

29 tháng 6 2017

bài toán iêu cầu j z ??? bn

18 tháng 5 2019

\(\frac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\frac{x^2\left(3x^2-2x+1\right)-2x\left(3x^2-2x+1\right)-5\left(3x^2-2x+1\right)}{3x^2-2x+1}\)

\(=\frac{\left(3x^2-2x+1\right)\cdot\left(x^2-2x-5\right)}{3x^2-2x+1}\)

\(=x^2-2x-5\)

18 tháng 5 2019

\(\frac{2x^3-9x^2+19x-15}{x^2-3x+5}\)

\(=\frac{2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)}{x^2-3x+5}\)

\(=\frac{\left(x^2-3x+5\right)\left(2x-3\right)}{x^2-3x+5}\)

\(=2x-3\)

28 tháng 3 2020

ĐKXĐ bạn tự tìm nha : )

k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)

\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)

j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)

\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)

i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)

\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)

h, = k,

f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)

28 tháng 3 2020
https://i.imgur.com/1LeIfCN.jpg

\(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(\Leftrightarrow\left(x+2\right)3x\)

17 tháng 9 2017

bạn không làm được nữa o hộ mình cái mình đang cần gấp

4 tháng 6 2017

a) \(5x-10x^2\) = \(5x\left(1-2x\right)\)

b) Mạn phép sửa đề:

\(\dfrac{1}{2}x\left(x^2-4\right)+4\left(x+2\right)\) = \(\left(x+2\right)\left[\dfrac{1}{2}x\left(x-2\right)+4\right]\)

= \(\left(x+2\right)\left(\dfrac{1}{2}x^2-x+4\right)\)

c) \(x^4-y^6=\left(x^2-y^3\right)\left(x^2+y^3\right)\)

4 tháng 6 2017

e) \(x^3-4x^2+4x-1=x^3-x^2-3x^2+3x+x-1\)

= \(x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2-3x+1\right)\)

g) \(x^4+6x^3-12x^2-8x\)

= \(x\left(x^3-2x^2+8x^2-16x+4x-8\right)\)

= \(x\left[x^2\left(x-2\right)+8x\left(x-2\right)+4\left(x-2\right)\right]\)

= \(x\left(x-2\right)\left(x^2+8x+4\right)\)

h) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\) (*)

Đặt \(x^2+4x+8=a\) => (*) trở thành:

\(a^2+3ax+2x^2\) = \(a^2+ãx+2ax+x^2\)

= \(a\left(a+x\right)+2x\left(a+x\right)\)

= \(\left(a+x\right)\left(a+2x\right)\) (1)

Thay \(a=x^2+4x+8\) vào (1) ta được:

\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

=\(\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)\)

= \(\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]\)

= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)

P/s: Còn câu f đang suy nghĩ!