Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(3x-2\right)^2=9x^2-12x+4\)
\(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\)
\(\left(a+b\sqrt{3}\right)^2=a^2+2\sqrt{3}ab+3b^2\)
2) \(4a^2+4a+1=\left(2a+1\right)^2\)
\(9x^2-6x+1=\left(3x-1\right)^2\)
\(\dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{1}{3}y\right)^2\)
1.
$27x^2-1=(\sqrt{27}x)^2-1^2=(\sqrt{27}x-1)(\sqrt{27}x+1)$
2.
a)
$x^3-9x^2+27x-27=-8$
$\Leftrightarrow x^3-3.3x^2+3.3^2.x-3^3=-8$
$\Leftrightarrow (x-3)^3=-8=(-2)^3$
$\Rightarrow x-3=-2$
$\Leftrightarrow x=1$
b)
$64x^3+48x^2+12x+1=27$
$\Leftrightarrow (4x)^3+3.(4x)^2.1+3.4x.1^2+1^3=27$
$\Leftrightarrow (4x+1)^3=3^3$
$\Rightarrow 4x+1=3$
$\Leftrightarrow x=\frac{1}{2}$
\(a\)) \(\left(3x+2\right)^3\)
= \(9x^3\)+\(54x^2\)+\(36x\)+8
\(b\)) \(\left(\frac{x}{4}-2\right)^3\)
=\(\frac{x^3}{64}\)\(-\)\(\frac{3x^2}{8}\)\(+\)\(3x\)\(-\)8
\(c\)) \(x^3-\frac{1}{8}\)
=\(\left(x-\frac{1}{2}\right)\left(x^2+\frac{x}{2}+\frac{1}{4}\right)\)
\(a,\left(2x-y\right)^2=4x^2-4xy+y^2\)
\(b,\left(5x-7y^2\right).\left(5x+7y^2\right)=\left(25x^2-49y^4\right)\)
\(c,\left(5x-7y\right)^2.\left(5x+7y\right)^2=\left(25x^2-70xy+49x^2\right).\left(25x^2+70xy+49x^2\right)\)
\(d,\left(\frac{1}{3}x+5y\right).\left(5y-\frac{1}{3}x\right)=25y^2-\frac{1}{9}x^2\)
học tốt nha
a) (2x-y)2 = (2x)2 - 2.2x.y + y2 =4x2-4xy+y2
b)(5x-7y2).(5x+7y2) = (5x)2 - (7y2) 2 =25x2 - 49y4
câu c,d mk ko bít làm
= \(\frac{x^2}{4}-2\frac{x}{2}y+y^2=\frac{x^2}{4}-xy+y^2\)
Study well
\(x+3^2=x^2+2.x.3+3^2=x^2+6x+9\)
\(4x^{^{ }2}-9=4x^2-2.4x.9+9^2=16x^2-72x+81\)
\(\left(x-\dfrac{3}{2}\right)^2=x^2-2.x.\dfrac{3}{2}+\dfrac{3}{2}^2=x^2-3x+\dfrac{9}{4}\)
\(\left(x+3\right)^2=x^2+6x+9\)
\(\left(4x^2-9\right)^2=16x^4-72x^2+81\)
\(\left(x+\dfrac{1}{2}\right)^2=x^2+x+\dfrac{1}{4}\)
\(\left(x-\dfrac{3}{2}\right)^2=x^2-3x+\dfrac{9}{4}\)
\(x^2-4=\left(x+2\right)\left(x-2\right)\)
\(x^2-289=\left(x+17\right)\left(x-17\right)\)
a: \(=-\left[\left(\dfrac{1}{3}ab^2+2a^3b\right)^3\right]\)
\(=\dfrac{-1}{27}a^3b^6-3\cdot\dfrac{1}{9}a^2b^4\cdot2a^3b-3\cdot\dfrac{1}{3}ab^2\cdot4a^6b^2-8a^9b^3\)
\(=\dfrac{-1}{27}a^3b^6-\dfrac{2}{3}a^5b^5-4a^7b^4-8a^9b^3\)
b: \(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)
\(=6x^2+2-6x^2+6\)
=8
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)
\(=\dfrac{19}{2}x^2-6x-22\)
Vậy biểu thức trên phụ thuộc vào biến x.
b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)
Giải:
VT = \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3+y^2+y-y^2-y-1\)
\(=y^3-1\)
Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).
Giải:
a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)
\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)
Vậy biểu thức trên phụ thuộc vào biễn x
b) \(\left(y-1\right)\left(y^2+y+1\right)\)
\(=y^3-y^2+y^2-y+y-1\)
\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)
\(=y^3-1\)
Vậy ...
Phần a? phải là \(4a^2-4a+1\)chứ
a) \(4a^2-4a+1=\left(2a\right)^2+2.2a+1\)
\(=\left(2a+1\right)^2\)
b) \(9x^2-25y^2=\left(3x\right)^2-\left(5y\right)^2\)
\(=\left(3x-5y\right)\left(3x+5y\right)\)
c) \(1-2x+a^2=\left(1-a\right)^2\)
d) \(\left(2x+1\right)-2.\left(2x+1\right)\left(3x-y\right)+\left(3x-y\right)^2\)
\(=\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)
nếu có sai thì bn thông cảm
1.
b) nó là hằng đẳng thức rồi bn nhá
c) \(1-2a+a^2\)= \(1^2-2a1+a^2\)=\(\left(1-a\right)^2\)
d)\(\left[\left(2x+1\right)-\left(3x-y\right)\right]^2\)=\(\left(2x+1-3x+y\right)^2\)=\(\left(1-x+y\right)^2\)
2.
a)\(\left(\frac{1}{2}x\right)^2-\left(3y\right)^2\)=\(\left(\frac{x}{2}-3y\right)\left(\frac{x}{2}+3y\right)\)
b) Ko khai triển đc
c) \(4x^2+2xy+\frac{1}{4}y^2\)
P xem lại đề đi!!! Băng Tâm Liên
Có phải đề như z k???
\(8x^3+\dfrac{1}{27}y^3\)
\(4x^2-9\)
\(\left(3x^2+\dfrac{2}{3}y\right)^2\)
\(=\left(3x^2\right)^2+2.3x.\dfrac{2}{3}y+\left(\dfrac{2}{3}y\right)^2\)
\(=9x^4+4xy+\dfrac{4}{9}y^2\)
(3x2+\(\dfrac{2}{3}\)y)2
=9\(x^4\)+\(\dfrac{4}{9}\)\(y^2\)