loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

a) Do ABCD là hình vuôn nên: 

\(AB=BC=CD=AD\) 

Mà: \(\left\{{}\begin{matrix}AB=AM+MB\\BC=BN+NC\\CD=CP+PD\\AD=DQ+QA\end{matrix}\right.\) 

Lại có: \(AM=BN=CP=DQ\)

\(\Rightarrow MB=NC=PD=QA\left(dpcm\right)\) 

b) Xét \(\Delta QAM\) và \(\Delta NCP\) có:

\(\widehat{A}=\widehat{C}=90^o\left(gt\right)\)

\(AM=CP\left(gt\right)\)

\(QA=NC\left(cmt\right)\)

\(\Rightarrow\Delta QAM=\Delta NCP\left(c.g.c\right)\) 

c) Xét các tam giác: \(\Delta QAM,\Delta NCP,\Delta PDQ,\Delta MBN\) ta có:

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^o\left(gt\right)\)

\(AM=BN=CP=DQ\left(gt\right)\)

\(MB=NC=PD=QA\left(cmt\right)\)

\(\Rightarrow\Delta QAM=\Delta NCP=\Delta PDQ=\Delta MBN\left(c.g.c\right)\) 

\(\Rightarrow MQ=QP=PN=NM\) (các cạnh tương ứng) 

\(\Rightarrow MNPQ\) là hình thoi (1)

Xét tam giác QAM ta có:

\(\widehat{QMA}+\widehat{AQM}=180^o-90^o=90^o\) 

Mà: \(\Delta QAM=\Delta MBN\left(cmt\right)\)

\(\Rightarrow\widehat{BMN}=\widehat{AQM}\) (hai góc tương ứng) 

\(\Rightarrow\widehat{BMN}+\widehat{QMA}=90^o\)

Lại có: \(\widehat{BMN}+\widehat{QMA}+\widehat{NMQ}=180^o\)

\(\Rightarrow\widehat{NMQ}=180^o-90^o=90^o\) (2) 

Từ (1) và (2) ta có MNPQ là hình vuông 

22 tháng 11 2023

a) ����ABCD là hình vuông nên ��=��=��=��AB=BC=CD=DA

M��=��=��=��AM=BN=CP=DQ.

Trừ theo vế ta được ��−��=��−��=��−��=��−��ABAM=BCBN=CDCP=DADQ

Suy ra ��=��=��=��MB=NC=PD=QA

Xét tam giác QAM và tam giác NPC có:

góc A = góc C = 90 độ

AQ=NC(cmt)

AM=CP(gt)

=>Tam giác QAM= tam giác NPC(c.g.c)

c)=> NP = MQ ( hai cạnh tương ứng)

Chứng minh tương tự như phần b ta có: Tam giác QAM= tam giác PDQ và tam giác QAM= tam giác MBN

Khi đó: MQ=PQ, MN=MQ và góc AMQ= góc DQP

Mà góc AMQ+AQM=90 độ

=>góc DQP+ góc AQM= 90 độ

Do đó góc MQP = 90 độ

tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi

Lại có góc MQP = 90 độ nên là hình vuông

Vậy tứ giác MNPQ là hình vuông

 

 

 

25 tháng 11 2023

1: AM+MB=AB

BN+NC=BC

CP+PD=CD

QD+QA=AD

mà AB=BC=CD=AD và AM=BN=CP=QD

nên BM=CN=PD=QA

2: Xét ΔMAQ vuông tại A và ΔNBM vuông tại B có

MA=NB

AQ=BM

Do đó: ΔMAQ=ΔNBM

=>MQ=MN(1)

Xét ΔMBN vuông tại B và ΔNCP vuông tại C có

MB=NC

BN=CP

Do đó: ΔMBN=ΔNCP

=>MN=NP(2)

Xét ΔNCP vuông tại C và ΔPDQ vuông tại D có

NC=PD

CP=DQ

Do đó: ΔNCP=ΔPDQ

=>NP=PQ(3)

Từ (1),(2),(3) suy ra MQ=MN=NP=PQ

ΔMAQ=ΔNBM

=>\(\widehat{AMQ}=\widehat{BNM}\)

mà \(\widehat{BNM}+\widehat{BMN}=90^0\)(ΔBMN vuông tại B)

nên \(\widehat{AMQ}+\widehat{BMN}=90^0\)

\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)

=>\(90^0+\widehat{QMN}=180^0\)

=>\(\widehat{QMN}=90^0\)

Xét tứ giác MNPQ có

MN=NP=PQ=MQ

nên MNPQ là hình thoi

Hình thoi MNPQ có \(\widehat{QMN}=90^0\)

nên MNPQ là hình vuông

 

20 tháng 11 2023

a)  ����ABCD là hình bình hành.

b)  �,�,�P,N,Q thẳng hàng.

c) Δ���ΔABC cần thêm điều kiện gì để tứ giác ����ABCD là hình vuông.

21 tháng 11 2023

a) Δ��� Tam giác ABC vuông cân nên góc B= góc C = 45 độ

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông

 

21 tháng 11 2023

a) Δ���ΔABC vuông cân nên �^=�^=45∘.B=C=45.

Δ���ΔBHE vuông tại H có ���^+�^=90∘BEH+B=90

Suy ra ���^=90∘−45∘=45∘BEH=9045=45 nên �^=���^=45∘B=BEH=45.

Vậy Δ���ΔBEH vuông cân tại �.H.

b) Chứng minh tương tự câu a ta được Δ���ΔCFG vuông cân tại G nên ��=��GF=GC và ��=��HB=HE

Mặt khác ��=��=��BH=HG=GC suy ra ��=��=��EH=HG=GF và ��EH // ��FG (cùng vuông góc với ��)BC)

Tứ giác ����EFGH có ��EH // ��,��=��FG,EH=FG nên là hình bình hành.

Hình bình hành ����EFGH có một góc vuông �^H nên là hình chữ nhật

Hình chữ nhật ����EFGH có hai cạnh kề bằng nhau ��=��EH=HG nên là hình vuông.

5 tháng 10 2023

a/

Ta có

IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có

MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB

Mà \(AB\perp AC\) 

\(\Rightarrow MI\perp AC\Rightarrow MK\perp AC\)

=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

b/

Ta có

MI//AB (cmt) => MK//AB

AK//MC (cạnh đối hbh AMCK) => AK//MB

=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Để AMCK là hình vuông \(\Rightarrow AM\perp BC\) => AM là đường cao của tg ABC

Mà AM là trung tuyến của tg ABC (gt)

=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)

=> Để AMCK là hình vuông thì tg ABC vuông cân tại A

 

22 tháng 11 2023

a) Tứ giác ����AMCK có hai đường chéo ��,��AC,MK cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Δ���ΔABC vuông tại A có ��AM là đường trung tuyến nên ��=��=��AM=MC=MB.

Vậy hình bình hành ����AMCK có ��=��AM=MC nên là hình thoi.

b) Vì ����AMCK là hình thoi nên ��AK // ��BM và ��=��=��AK=MC=BM.

Tứ giác ����AKMB có ��AK // ��,��=��BM,AK=BM nên là hình bình hành.

c) Để ����AMCK là hình vuông thì cần có một góc vuông hay ��⊥��AMMC.

Khi đó Δ���ΔABC có ��AM vừa là đường cao vừa là đường trung tuyến nên cân tại A.

Vậy Δ���ΔABC vuông cân tại A thì ����AMCK là hình vuông.

25 tháng 11 2019

a) 

Vì BN = DQ , AD = BC => AD - DQ = BC - BN hay AQ = NC 

Xét tam giác AQM và CNP có:

\(\hept{\begin{cases}AQ=CN\\AM=CP\\\widehat{QAM}=\widehat{NCP}\left(doABCDl\text{à}hbh\right)\end{cases}}\)

\(\Rightarrow\Delta AQM=\Delta CNP\left(c.g.c\right)\Rightarrow QM=NP\)

Hoàn toàn tương tự: △MBN=△PDQ(c.g.c)⇒MN=PQ

Tứ giác MNPQMNPQ có 2 cặp cạnh đối bằng nhau nên là hình bình hành.

=> MNPQ là hình bình hành.

b) Gọi K là giao điểm của AC và MP

Xét tam giác AKM và CKP ta có:
\(\hept{\begin{cases}\widehat{KAM}=\widehat{KCP}\left(slt\right)\\\widehat{KMA}=\widehat{KPC\left(slt\right)}\\\Rightarrow AM=CP\end{cases}}\) 

\(\Rightarrow\Delta AKM=\Delta CKP\left(g.c.g\right)\)

\(\Rightarrow AK=CK;KM=KP\left(1\right)\)

Vì ABCDABCD là hình bình hành nên hai đường chéo AC,BDAC,BD cắt nhau tại trung điểm mỗi đường. Tương tự, MNPQMNPQ là hình bình hành nên MP,QNMP,QN cắt nhau tại trung điểm mỗi đường

Mà từ (1)(1) suy ra KK là trung điểm của AC,MPAC,MP, do đó KK cũng là trung điểm của BD,QNBD,QN

Do đó AC,BD,MP,NQAC,BD,MP,NQ đồng quy tại (trung điểm) KK.

9 tháng 10 2023

Xét hbh ABCD có AB =CD;AB//CD

+) M,N lần lượt là trung điểm của AB,CD

=>AM=CN

+)M,N lần lượt là nằm trên của .AB,CD

       => AM//CN

27 tháng 10 2023

a) ����ABCD là hình bình hành nên ��=��AB=DC suy ra 12��=12��21AB=21DC

Do đó ��=��=��=��AM=BM=DN=CN.

Tứ giác ����AMCN có ��AM // ��,��=��NC,AM=NC nên là hình bình hành.

Lại có Δ���ΔADC vuông tại A có ��AN là đường trung tuyến nên ��=12��=��=��AN=21DC=DN=CN.

Hình bình hành ����AMCN có hai cạnh kề bằng nhau nên là hình thoi, khi đó hai đường chéo ��,��AC,MN vuông góc với nhau.

Tứ giác ����AMCN là hình thoi.