K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

Trong tam giác vuông BIK có:

I B   =   I K . t g   ∠ I K B   =   I K . t g ( 50 °   +   15 ° )   =   380 . t g   65 °   ≈   814   ( m )

Trong tam giác vuông AIK có:

I A   =   I K . t g   ∠ I K A   =   I K . t g   50 °   =   380 . t g 50 °   ≈   452   ( m )

Vậy khoảng cách giữa hai thuyền là:

AB = IB – IA = 814 – 452 = 362 (m)

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

27 tháng 7 2017

Trong tam giác vuông BIK có:

IB = IK.tg ∠IKB = IK.tg(50o + 15o) = 380.tg 65o ≈ 814 (m)

Trong tam giác vuông AIK có:

IA = IK.tg ∠IKA = IK.tg 50o = 380.tg50o ≈ 452 (m)

Vậy khoảng cách giữa hai thuyền là:

AB = IB – IA = 814 – 452 = 362 (m)

Tham khảo:

undefined

a) Khoảng cách giữa 2 vị trí đó là : 

\(\frac{20000}{180}.\left(72-42\right)\simeq2800\left(km\right)\)

b) Bán kính của Trái Đất là : 

\(\frac{20000}{3,14}\simeq6400\left(km\right)\)

Độ dài đường xích đạo là :

\(20000.2=40000\left(km\right)\)

Vì trái đất là hình cầu :

Thể tích hình cầu được tính dưới dạng : \(V=\frac{4}{3}.3,14.R^3\)( R là bán kính )

Vậy thể tích Trái Đất là : 

\(\frac{4}{3}.3,14.\left(6400\right)^3\simeq1097509547000\left(km^3\right)\)

Tham khảo:

21 tháng 6 2017

a) ta có : VT = \(\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1=4-2\sqrt{3}\) = VP

vậy \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) (đpcm)

b) ta có : VT = \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}-\sqrt{3}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) = \(\left|\sqrt{3}-1\right|-\sqrt{3}\) = \(\sqrt{3}-1-\sqrt{3}\) = 1 = VP

vậy \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1\) (đpcm)

21 tháng 6 2017

a, Ta có:
\(VT=\left(\sqrt{3}-1\right)^2=3-2\sqrt{3}+1\\ =4-2\sqrt{3}=VP\)

\(\Rightarrow\) đpcm

7 tháng 2 2018

0 bt l m à

26 tháng 7 2017

Gọi C là vị trí của máy bay.

Kẻ CH⊥ABCH⊥AB

Trong tam giác vuông ACH, ta có:

AH=CH.cotgˆA(1)AH=CH.cot⁡gA^(1)

Trong tam giác vuông BCH, ta có:

BH=CH.cotgˆB(2)BH=CH.cot⁡gB^(2)

Từ (1) và (2) suy ra:

(AH+BH)=CH.cotgˆA+CH.cotgˆB(AH+BH)=CH.cot⁡gA^+CH.cot⁡gB^

Suy ra:

CH=ABcotgˆA+cotgˆB=ABcotg40∘+cotg30∘≈102,606(cm)