Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dòng điện xoay chiều khiến cho dây chịu tác dụng của lực từ, và sẽ dao động theo phương vuông góc với đường sức từ, với tần số 50Hz, hay ω=2πf=100πω=2πf=100π và T=0.02sT=0.02s
Khoảng cách giữa 2 điểm dừng (ứng với 1 bụng sóng) là λ/2=vT/2=12×0.02/2=0.12λ/2=vT/2=12×0.02/2=0.12
Có 6 bụng sóng, vậy thì chiều dài sợi dây là: 6λ2=0.12×6=0.72(m)6λ2=0.12×6=0.72(m)
Đáp án là A. 72cm
ta có:f=4p/2p=2(hz)
lamda=v/f=50/2=25(cm)
vì M cùng pha với O nên :2p*d1/lamda=2p suy ra d1=25(cm)
vì N ngược pha với O nên :2p*d2/lamda=p suy ra d2 =12.5(cm)
> O x M 7 -7 π/3
Quỹ đạo chuyển động là 14 cm → A = 7 cm.
Tại thời điểm ${t_0}$ chất điểm ở vị trí M có pha ban đầu là –π/3; độ lớn gia tốc cực đại tại biên.
→ từ M đến biên lần thứ 3 thì ∆φ = π/3 + 2π = 7π/3 rad.
→ t = ∆φ/ω = 7/6 s và s = 3,5 + 28 = 31,5 cm
→ v = s/t = 27 cm/s.
Câu 1: Sóng điện từ là sóng ngang nên chọn C
Câu 2: Tần số không đổi nên chọn B
Câu 1 :
A. Sóng điện từ tuân theo quy định phản xạ, khúc xạ như ánh sáng
B. Sóng điện từ là sóng ngang.
C. Sóng điện từ là sóng dọc
D. Sóng điện từ là điện từ trường lan truyền trong không gian.
Câu 2 :
A. biên độ sóng tại mỗi điểm
B. chu kỳ của sóng
C. tốc độ truyền sóng
D. bước sóng
Độ lệch pha giữa hai dao động là ∆φ = 0,75π – 0,5π = 0,25π rad.
- Khối lượng nước bị bay hơi mà không ngưng tụ lại trên nước đá là: \(\Delta m = m_0+m-m_1\)
- Nhiệt lượng cần cung cấp để làm lượng nước trên bay hơi là: \(Q_1=\Delta m. L=(m_0+m-m_1).L\)
- Nhiệt lượng cần cung cấp để làm tan đá là: \(Q_2=m.\lambda\)
- Nhiệt lượng cần cung cấp để m gam nước tăng nhiệt đến nhiệt độ sôi là: \(Q_3=m.c.t_s\)
Vậy nhiệt lượng mà bếp cung cấp cho bình nước là: \(Q=Q_1+Q_2+Q_3=(m_0+m-m_1).L+m.\lambda+m.c.t_s\)
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)
Đáp án C