Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ge-15\)
\(8x^2+16x-20-\sqrt{x+15}=0\)
<=> \(8x^2+16x-20=\sqrt{x+15}\)
=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)
<=> \(64x^4+256x^3-64x^2-641x+385=0\)
<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)
<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)
<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)
+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)
+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)
THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng
Vậy phương trình có hai nghiệm:....
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
a)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\Rightarrow x=3\) pt trong ngoặc vô nghiệm
b)\(pt\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x^2-4\right)=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{1}{\sqrt{x^2-4}}-1\right)=0\)
\(\Rightarrow x=\pm2;\frac{1}{\sqrt{x^2-4}}-1=0\)
\(\Rightarrow x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy no pt là x=±2;x=± căn 5
ĐKXĐ: \(x\ge1\)
\(x^3-x^2-12x\sqrt{x-1}+20=0\)
\(\Leftrightarrow x^2\left(x-1\right)-12x\sqrt{x-1}+20=0\)
Đặt \(\sqrt{x-1}=t\)\(\left(t\ge0\right)\)
=> pt <=> \(x^2t^2-12xt+20=0\)
Với t=0 => 20=0 ( vô lý )
Với \(t\ne0\)ta có:
\(\Delta'=b'^2-ac=36t^2-20t^2=16t^2>0\)
=> phương trình có 2 nghiệm phân biệt
\(\orbr{\begin{cases}x_1=\frac{\sqrt{\Delta'}-b'}{a}\\x_2=\frac{-\sqrt{\Delta'}-b'}{a}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_1=\frac{4t+6t}{t^2}\\x_2=\frac{-4t+6t}{t^2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_1=\frac{10}{t}\\x_2=\frac{2}{t}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{\sqrt{x-1}}\\x=\frac{2}{\sqrt{x-1}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{x-1}=10\\x\sqrt{x-1}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2\left(x-1\right)=100\\x^2\left(x-1\right)=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^3-x^2-100=0\\x^3-x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\left(\text{th}ỏa\text{m}ãn\right)\)
Vậy:....
P/S: Sai thì thôi nhé
a. ĐKXĐ: \(x\ge-\frac{10}{3}\)
Điều kiện có nghiệm : \(x^2+9x+20\ge0\Leftrightarrow\orbr{\begin{cases}x\ge-4\\x\le-5\end{cases}}\)
Kết hợp ta có điều kiện \(x\ge-\frac{10}{3}.\)
Từ phương trình ta có: \(x^2+9x+18=2\left(\sqrt{3x+10}-1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=2.\frac{3x+9}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6\right)=\frac{6\left(x+3\right)}{\sqrt{3x+10}+1}\)
\(\Leftrightarrow\left(x+3\right)\left(x+6-\frac{6}{\sqrt{3x+10}+1}\right)=0\)
TH1: x = - 3 (tm)
Th2: \(x+6-\frac{6}{\sqrt{3x+10}+1}=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x+6-6=0\)
\(\Leftrightarrow\left(x+6\right)\sqrt{3x+10}+x=0\)
Đặt \(\sqrt{3x+10}=t\Rightarrow x=\frac{t^2-10}{3}\)
Vậy thì \(\left(\frac{t^2-10}{3}+6\right)t+\frac{t^2-10}{3}=0\)
\(\Leftrightarrow\frac{t^3+8t}{3}+\frac{t^2-10}{3}=0\Leftrightarrow t^3+t^2+8t-10=0\Leftrightarrow t=1\Leftrightarrow x=-3\left(tm\right).\)
Vậy pt có 1 nghiệm duy nhất x = - 3.
b. Nhân 2 vào hai vế của phương trình thứ nhất rồi trừ từng vế cho phương trình thứ hai, ta được:
\(2x^2y^2-4x+2y^2-\left(2x^2-4x+y^3+3\right)=0\)
\(\Leftrightarrow2x^2y^2-2x^2-y^3+2y^2-3=0\)
\(\Leftrightarrow2x^2\left(y^2-1\right)-\left(y+1\right)\left(y^2-3y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x^2y-2x^2-y^2+3y-3\right)=0\)
Với y = - 1 ta có \(x^2-2x+1=0\Leftrightarrow x=1.\)
Với \(\left(2x^2+3\right)y-\left(2x^2+3\right)-y^2=0\Leftrightarrow\left(2x^2+3\right)\left(y-1\right)=y^2\)
\(\Rightarrow\frac{y^2}{y-1}-4x=-y^3\Rightarrow x=\frac{y^4-y^3+y^2}{4\left(y-1\right)}\)
Thế vào pt (1) : Vô nghiệm.
Vậy (x; y) = (1; -1)
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)
Cách 1: x 2 − 9 x + 20 = 0
∆ =81-80=1>0 nên phương trình có hai nghiệm phân biệt x 1 = 9 + 1 2 = 5 ; x 2 = 9 − 1 2 = 4
Vậy phương trình có tập nghiệm S={4;5}
Cách 2:
x 2 − 9 x + 20 = 0 = 0 ⇔ x 2 − 5 x − 4 x + 20 = 0 ⇔ ( x − 5 ) ( x − 4 ) = 0 ⇔ x − 5 = 0 x − 4 = 0 ⇔ x = 5 x = 4
Vậy phương trình có tập nghiệm S={4;5}