Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
Câu 1:
\(x+y=2\Rightarrow y=2-x\)
\(\Rightarrow A=x^2+2\left(2-x\right)^2+x-2\left(2-x\right)+1\)
\(A=x^2+2x^2-8x+8+x-4+2x+1\)
\(A=3x^2-5x+5\)
\(A=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{35}{12}\)
\(A=3\left(x-\frac{5}{6}\right)^2+\frac{35}{12}\ge\frac{35}{12}\)
\(\Rightarrow A_{min}=\frac{35}{12}\) khi \(x=\frac{5}{6}\) ; \(y=\frac{7}{6}\)
Câu 2:
\(x+2y=1\Rightarrow x=1-2y\)
\(\Rightarrow B=\left(1-2y\right)^2-5y^2+3\left(1-2y\right)-y-2\)
\(B=4y^2-4y+1-5y^2+3-6y-y-2\)
\(B=-y^2-11y+2\)
\(B=-\left(y^2+11y+\frac{121}{4}\right)+\frac{129}{4}\)
\(B=-\left(y+\frac{11}{2}\right)^2+\frac{129}{4}\le\frac{129}{4}\)
\(\Rightarrow B_{max}=\frac{129}{4}\) khi \(\left\{{}\begin{matrix}y=-\frac{11}{2}\\x=12\end{matrix}\right.\)
Câu 3:
Ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\Rightarrow2\left|xy\right|\le4\Rightarrow\left|xy\right|\le2\Rightarrow x^2y^2\le4\)
\(D=\left(x^2\right)^3+\left(y^2\right)^3+x^4+y^4\)
\(D=\left(x^2+y^2\right)\left[\left(x^2+y^2\right)^2-3x^2y^2\right]+\left(x^2+y^2\right)^2-2x^2y^2\)
\(D=4\left(16-3x^2y^2\right)+16-2x^2y^2\)
\(D=80-14x^2y^2\ge80-14.4=24\)
\(\Rightarrow D_{min}=24\) khi \(\left\{{}\begin{matrix}x^2=2\\y^2=2\end{matrix}\right.\)
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
\(a,x^2-4xy+5y^2=169\\ \Leftrightarrow\left(x-2y\right)^2+y^2=169\\ Vìx,y\in Znên:\\ \left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=169\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=169\\y^2=0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=25\\y^2=144\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=144\\y^2=25\end{matrix}\right.\end{matrix}\right.\\ Giảira\)