K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Thèo đề bài, ta có:

\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

x ; y ; z thì bạn tự tìm nhé , chắc cái này không khó đâu nhỉ ??

14 tháng 7 2016

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) \(=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\frac{x}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)

\(\frac{y}{4}=\frac{1}{4}\Rightarrow y=1\)

\(\frac{z}{6}=\frac{1}{4}\Rightarrow z=\frac{3}{2}\)

23 tháng 8 2016

bài a âu có z âu mà tìm bn ???

23 tháng 8 2016

\(\frac{x}{a}?\)

1 tháng 8 2017

Đặt x/2 = y/3 = z/4 = k => x = 2k ; y = y = 3k và z = 4k

Ta có : x.y.z = 216 => 2k.3k.4k = 216 => 24k3 = 216 => k3 = 9 => k = \(\sqrt[3]{9}\)

Với k = \(\sqrt[3]{9}\)=> x = 2.\(\sqrt[3]{9}\); y = 3.\(\sqrt[3]{9}\)và z = 4.\(\sqrt[3]{9}\)

Vậy .... 

PS : kq bài này hơi lẻ nha 

1 tháng 8 2017

áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{4}\)=\(\frac{x+y+z}{2+3+4}\)=\(\frac{216}{9}\)=24

suy ra : 2 * 24 = 48

            3 * 24 =72

            4 * 24 = 96

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

15 tháng 2 2019

\(\text{3 Giải}\)

\(\frac{x+1}{6}=\frac{8}{3}=\frac{16}{6}\Rightarrow x+1=16\Rightarrow x=15.\text{Vậy: x=15}\)

12 tháng 8 2016

=>\(\frac{x^2}{2}+\frac{y^2}{3}+\frac{z^2}{4}=\frac{x^2}{5}+\frac{y^2}{5}+\frac{z^2}{5}\)

=>\(\left(\frac{x^2}{2}-\frac{x^2}{5}\right)+\left(\frac{y^2}{3}-\frac{y^2}{5}\right)+\left(\frac{z^2}{4}-\frac{z^2}{5}\right)=0\)

mà x2,y2,z2 \(\ge\)0

=>\(\frac{x^2}{2},\frac{y^2}{3},\frac{z^2}{4},\frac{x^2}{5},\frac{y^2}{5},\frac{z^2}{5}\ge0\)

\(\Rightarrow\left(\frac{x^2}{2}-\frac{x^2}{5}\right)\ge0,\left(\frac{y^2}{3}-\frac{y^2}{5}\right)\ge0,\left(\frac{z^2}{4}-\frac{z^2}{5}\right)\ge0\)

Dấu bằng xảy ra khi:

\(\frac{x^2}{2}=\frac{x^2}{5},\frac{y^2}{3}=\frac{y^2}{5},\frac{z^2}{4}=\frac{z^2}{5}\)

\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)

14 tháng 7 2016

a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)

\(\Rightarrow x=-25;y=-35;z=-20\)

14 tháng 7 2016

b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)

\(\Rightarrow x=-25;y=20;z=35\)

24 tháng 3 2020

Ta có :

\(\frac{2}{3}\)là phân số tối giản 

nên \(\frac{-x}{6}=\frac{2}{3}\)

\(\Rightarrow\text{-x.3=2.6}\)

\(\Rightarrow-x.3=12\)

\(\Rightarrow x=-4\)

Tương tự \(\frac{14}{-y}=\frac{2}{3}\)

\(14.3=2.y\)

\(\Leftrightarrow42=2y\)

\(\Rightarrow y=21\)

Và \(\frac{z}{60}=\frac{2}{3}\)

\(\Leftrightarrow3z=2.60\)

\(\Leftrightarrow3z=120\)

\(\Rightarrow z=40\)

Vậy x=-4

       y=21

        z=40

chúc bạn học tốt !

\(\frac{-x}{6}=\frac{14}{-y}=\frac{z}{60}=\frac{2}{3}\)

Xét \(\frac{-x}{6}=\frac{2}{3}\)

\(\Leftrightarrow-x.3=12\Leftrightarrow-x=4\Leftrightarrow x=-4\)

Xét \(\frac{14}{-y}=\frac{2}{3}\)

\(\Leftrightarrow14.3=-y.2\Leftrightarrow42=-y.2\Leftrightarrow y=-21\)

Xét \(\frac{z}{60}=\frac{2}{3}\)

\(\Leftrightarrow z.3=120\Leftrightarrow z=40\)