\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x^2-y^2+2z^2=108\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2-y^2+2z^2}{4-9+2\cdot16}=\frac{108}{27}=4\)

\(\Rightarrow\begin{cases}x=4;x=-4\\y=6;y=-6\\z=8;z=-8\end{cases}\)

Vậy pt có nghiệm là \(\left[\begin{array}{nghiempt}x=4;y=6;z=8\\x=-4;y=-6;z=-8\end{array}\right.\)

2 tháng 10 2016

@Nguyễn Đình Dũng

24 tháng 9 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=16\\y^2=36\\z^2=64\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)

22 tháng 9 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=4\\\frac{y^2}{9}=4\\\frac{z^2}{16}=4\end{cases}}\)=> \(\hept{\begin{cases}x=\pm4\\y=\pm6\\z=\pm8\end{cases}}\)

29 tháng 11 2016

vì x/2 =y/3=z/4 nên x2/4 = y2/ 9 = 2z2/32

áp dụng .............................

=> x2/4 = y2 /9 = 2z2 /32 = x2-y2+2z2  / 4 -9 +32  = 108 / 27 =4

=> x2 = 16 => x = 4

   y2 =36 => y = 6

  2z2 = 128 => z =8

                     

đặt x/2 = y/3 = z/4 =k ( k khác 0 )

=> x = 2k 

     y=3k

     z =4k

=> xyz = 2k3k4k = 24k = -480 => k= -20

=> x=-40

     y=-60 

     z=-80

29 tháng 11 2016

Pham Trung: Dòng thứ tư tính từ dưới lên trên: 2k3k4k = 24* k^3 (ko phải 24k nhé ^^!)

10 tháng 8 2016

b) Theo đề bài, ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x+y+z=50

\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)

  • \(\frac{x}{4}=2.4=8\)
  • \(\frac{y}{6}=2.6=12\)
  • \(\frac{z}{15}=2.15=30\)

Vậy x=8,y=12,z=30.

e) Theo đề bài, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)

\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (vì x+y+z khác 0). Do đó x+y+z=0,5

Thay kết quả này vào đề bài ta được:

\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)

tức là: \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{\left(-2,5\right)-z}{z}=2\)

 Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{\left(-5\right)}{6}\)

hihi ^...^ vui ^_^

11 tháng 8 2016

mà bạn chắc đúng k vậy

 

9 tháng 10 2015

a) Ta có : x/2=y/3; y/5=z/4 => 

             = x/10=y/15 ; y/15= z/12

           => x/10= y/15=z/12

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/10=y/15=z/12 = x-y+z / 10-15+12 = (-49)/7 = (-7)

+) Vì x/10 =(-7) => x=(-70)

+) Vì y/15 =(-7) => y=(-105)

+) Vì z/12 =(-7) => z=(-84)

NHẤN ĐÚNG NHA BẠN !

 

b)

Ta có: x/3=y/4 ; y/4=z/7 => x/3 = y/4=z/7

Ta có: x/3=y/4=z/7 = 2.x/2.3 =3.y/3.4 = z/7

                            = 2.x/6 = 3.y/12 = z/7

Ap dụng tính chất của dãy tỉ số bằng nhau, ta có:

2.x/6 = 3.y/12 = z/7 = 2.x+3.y-z/ 6+12-7

                              =186/11

Từ đó tính được x,y,z nha

NHẤN ĐÚNG NHA BẠN 

30 tháng 9 2017

bay gio o so thu nguoi ta cho hut thuoc roi

13 tháng 6 2018

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)    \(\left(k\ne0\right)\)

=> x= 2      ;y= 3k           ;z= 4k

Ta có: 

x2 - y2 + 2z2 =108

=>(2k)2 -(3k)2 +2(4k)2 =108

=>4k2 -9k2 +2(16k2) =108

=>4k2 -9k2 +32k2 =108

=>k2(4 -9 +32) =108

=>k2.27 =108

=>k=108: 27

=>k=4

=>\(k=\pm2\)

 TH1: k=2

=> x=2.2=4

     y=3.2=6

     z=4.2=8

TH2: k=-2

=> x=2.(-2)=-4

     y=3.(-2)=-6

     z=4.(-2)=-8

Vậy x=4; y=6; z=8

 hoặc x=-4; y=-6; z=-8

13 tháng 6 2018

Đặt  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=a\left(a\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2a\\y=3a\\z=4a\end{cases}}\)

Ta có :  \(x^2-y^2+2z^2=108\)

\(\Rightarrow\left(2a\right)^2-\left(3a\right)^2+2\left(4a\right)^2=108\)

\(\Leftrightarrow4a^2-9a^2+32a^2=108\)

\(\Leftrightarrow27a^2=108\)

\(\Leftrightarrow a^2=4\)

\(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=2\end{cases}}\)

+) Với  \(a=-2\Leftrightarrow\hept{\begin{cases}x=2a=-4\\y=3a=-6\\z=4a=-8\end{cases}}\)

+) Với  \(a=2\Leftrightarrow\hept{\begin{cases}x=2a=4\\y=3a=6\\z=4a=8\end{cases}}\)

Vậy ...

( p/s : có bn làm oy nhưng mk đang rảnh nên làm nhá :) đừng chửi :)))

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen