Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)
\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)
a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)
=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)
=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )
=> \(14.\frac{27}{28}=\frac{419}{28}\)
b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)
=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)
=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)
bài 2 :
( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632
=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632
=> 211x + 22366 = 23632
=> 211x = 23632 - 22366
=> 211x = 1266
=> x = 1266 : 211
x = 6
a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)
đề sai
b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
\(x=-2004\)
c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)
\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)
\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)
\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)
\(x=200\)
d)chịu
a) Ta có: \(\frac{x+1}{3}=\frac{2}{6}\)
⇔\(x=\frac{2\cdot3}{6}-1=\frac{6}{6}-1=1-1=0\)
Vậy: x=0
b) Ta có: \(\frac{x-1}{4}=\frac{1}{-2}\)
⇔\(x=\frac{1\cdot4}{-2}+1=\frac{4}{-2}+1=-1\)
Vậy: x=-1
c) Ta có: \(\frac{-1}{6}=\frac{3}{2x}\)
⇔\(2x=\frac{3\cdot6}{-1}=-18\)
hay x=-9
Vậy: x=-9
d) Ta có: \(\frac{x+1}{3}=\frac{3}{x+1}\)
⇔\(\left(x+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy: x∈{2;-4}
e) Ta có: \(\frac{4}{5}=\frac{-12}{9-x}\)
⇔\(9-x=\frac{-12\cdot5}{4}=-15\)
hay x=24
Vậy: x=24
f) Ta có: \(\frac{x-1}{-4}=\frac{-4}{x-1}\)
⇔\(\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy: x∈{5;-3}
g) Ta có: \(\frac{5-x}{2}=\frac{2}{5-x}\)
⇔\(\left(5-x\right)^2=4\)
⇔\(\left[{}\begin{matrix}5-x=2\\5-x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=7\end{matrix}\right.\)
Vậy: x∈{3;7}
h) Ta có: \(\frac{4-x}{-5}=\frac{-5}{4-x}\)
⇔\(\left(4-x\right)^2=25\)
⇔\(\left[{}\begin{matrix}4-x=5\\4-x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
Vậy: x∈{-1;9}
Ta có :
\(\frac{1}{3}+\frac{3}{35}=\frac{70}{210}+\frac{18}{210}=\frac{88}{210}\)
\(\frac{4}{7}+\frac{3}{5}+\frac{1}{3}=\frac{120}{210}+\frac{126}{210}+\frac{70}{210}=\frac{316}{210}\)
⇒ 88 < x < 316
ta có
\(\frac{x+1}{212}+\frac{x+2}{211}+\frac{x+3}{210}+\frac{x+4}{209}=-4\)\(-4\)
\(\Rightarrow\left(\frac{x+1}{212}+1\right)+\left(\frac{x+2}{211}+1\right)+\left(\frac{x+3}{210}+1\right)+\left(\frac{x+4}{209}+1\right)=-4+4\)
=> \(\frac{x+1+212}{212}+\frac{x+2+211}{211}+\frac{x+3+210}{210}+\frac{x+4+209}{209}\) =\(0\)
=> \(\frac{x+213}{212}+\frac{x+213}{211}+\frac{x+213}{210}+\frac{x+213}{209}\)=\(0\)
=> (x+213) \(\left(\frac{1}{212}+\frac{1}{211}+\frac{1}{210}+\frac{1}{209}\right)\)=0
mà\(\left(\frac{1}{212}+\frac{1}{211}+\frac{1}{210}+\frac{1}{209}\right)\)\(\ne0\)
=>x+213=0 => x=-213
vậy x= -213
\(\frac{x+1}{212}+\frac{x+2}{211}+\frac{x+3}{210}+\frac{x+4}{209}=-4\)
\(\Rightarrow\frac{x+1}{212}+1+\frac{x+2}{211}+1+\frac{x+3}{210}+1+\frac{x+4}{209}+1=-4+4=0\)
\(\Rightarrow\frac{x+213}{212}+\frac{x+213}{211}+\frac{x+213}{210}+\frac{x+213}{209}=0\)
\(\Rightarrow\left(x+213\right)\left(\frac{1}{212}+\frac{1}{211}+\frac{1}{210}+\frac{1}{209}\right)=0\)
\(\Rightarrow x+213=0\Leftrightarrow x=-213\)