K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}$

$\Leftrightarrow \frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}$

$\Leftrightarrow \frac{x-1}{2011}-1+\frac{x-2}{2010}-1=\frac{x-3}{2009}-1+\frac{x-4}{2008}-1$

$\Leftrightarrow \frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2009}+\frac{x-2012}{2008}$

$\Leftrightarrow (x-2012)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0$

Dễ thấy $\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}< 0$

Do đó $x-2012=0\Rightarrow x=2012$

28 tháng 2 2020

\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}.\)

\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-4}{2008}+\frac{x-3}{2009}\)

\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)=\left(\frac{x-4}{2008}-1\right)+\left(\frac{x-3}{2009}-1\right)\)

\(\Rightarrow\left(\frac{x-1-2011}{2011}\right)+\left(\frac{x-2-2010}{2010}\right)=\left(\frac{x-4-2008}{2008}\right)+\left(\frac{x-3-2009}{2009}\right)\)

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2008}+\frac{x-2012}{2009}\)

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2008}-\frac{x-2012}{2009}=0\)

\(\Rightarrow\left(x-2012\right).\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

\(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2008}-\frac{1}{2009}\ne0.\)

\(\Rightarrow x-2012=0\)

\(\Rightarrow x=0+2012\)

\(\Rightarrow x=2012\)

Vậy \(x=2012.\)

Chúc bạn học tốt!

26 tháng 3 2019

\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=0\) 

\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1+\frac{x-4}{2008}-1=0\) 

\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)+\left(\frac{x-3}{2009}-1\right)+\left(\frac{x-4}{2008}-1\right)=0\) 

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+\frac{x-2012}{2008}=0\) 

\(\Rightarrow\left(x-2012\right)\cdot\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)\) 

Vì \(\frac{1}{2011}< \frac{1}{2009}\) và \(\frac{1}{2010}< \frac{1}{2008}\) nên \(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\ne0\) 

\(\rightarrow x-2012=0\) 

\(\rightarrow x=2012\) 

Vậy x = 2012.

26 tháng 3 2019

Sorry bài mik làm sai nhé!

25 tháng 6 2018

\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)

\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)

\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)

Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức

25 tháng 6 2018

\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)

\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)

\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)

Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)

Nên \(x-2010=0\)

\(\Rightarrow\)\(x=2010\)

Vậy \(x=2010\)

Chúc bạn học tốt ~ 

24 tháng 5 2017

\(\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}\)

\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1=\frac{x-3}{2009}-1+\frac{x-4}{2008}-1\)

\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}=\frac{x-3-2009}{2009}+\frac{x-4-2008}{2008}\)

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2009}+\frac{x-2012}{2008}\)

\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

\(\Rightarrow x-2012=0\)

\(\Rightarrow x=2012\)

\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}\)\(=\frac{x-4}{2008}\)

\(\Leftrightarrow\frac{x-2012+2011}{2011}+\frac{x-2012+2010}{2010}+\frac{x-2012+2009}{2009}=\frac{x-2012+2008}{2008}\)

\(\Leftrightarrow\frac{x-2012}{2011}+1+\frac{x-2012}{2010}+1+\frac{x-2012}{2009}+1=\frac{x-2012}{2008}+1\)

\(\Leftrightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+2=\frac{x-2012}{2008}\)

\(\Leftrightarrow\frac{x-2012}{2008}-\frac{x-2012}{2009}-\frac{x-2012}{2010}-\frac{x-2012}{2011}-2=0\)

=>Sai đề nha bạn!

1 tháng 1 2020

áp dụng tính chất dãy tỷ số= nhau, ta có:

x-1/2011+x-2/2010+x-3/2009+x-4/2008=x-1+x-2+x-3+x-4/2011+2010+2009+2008

=x-1+x-2+x-3+x-4/8038

=(x-x+x-x)+[(1+4)+(-2+-3)]/8038

=0/8038

=0

8 tháng 8 2019

khó vậy

8 tháng 8 2019

\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)  

\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)

\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)

\(\Rightarrow|x-\frac{1}{3}|=2.8\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)

tính lại kết quả nhé

30 tháng 7 2015

\(\left(\frac{x+4}{2007}+1\right)+\left(\frac{x+3}{2008}+1\right)=\left(\frac{x+2}{2009}+1\right)+\left(\frac{x+1}{2010}+1\right)\)

\(\left(\frac{x+2011}{2007}\right)+\left(\frac{x+2011}{2008}\right)=\left(\frac{x+2011}{2009}\right)+\left(\frac{x+2011}{2010}\right)\)
\(\frac{x+2011}{2007}+\frac{x+2011}{2008}-\frac{x+2011}{2009}-\frac{x+2011}{2010}=0\)

\(\left(x+2011\right).\left(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)

Vì \(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\)khác 0 (các số hạng ko bằng nhau)

\(\Leftrightarrow\)\(x+2011=0\)

\(\Rightarrow x=0-2011\)

\(\Rightarrow x=-2011\)

 

 


 


 

23 tháng 6 2016

http://olm.vn/hoi-dap/question/425074.html

dzô đó là có cách giải

23 tháng 6 2016

https://www.youtube.com/watch?v=LdnMg61kPHA

28 tháng 8 2018

\(a,\frac{x+5}{2010}+\frac{x+6}{2009}+\frac{x+7}{2008}=-3\)

\(\Rightarrow\left(\frac{x+5}{2010}+1\right)+\left(\frac{x+6}{2009}+1\right)+\left(\frac{x+7}{2008}+1\right)=0\)

\(\Rightarrow\frac{x+2016}{2010}+\frac{x+2016}{2009}+\frac{x+2006}{2008}=0\)

chỉ bt lm v thoi "(

28 tháng 8 2018

a)   \(\frac{x+5}{2010}+\frac{x+6}{2009}+\frac{x+7}{2008}=-3\)

<=>   \(\frac{x+5}{2010}+1+\frac{x+6}{2009}+1+\frac{x+7}{2008}+1=0\)

<=>  \(\frac{x+2015}{2010}+\frac{x+2015}{2009}+\frac{x+2015}{2008}=0\)

<=>  \(\left(x+2015\right)\left(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)

<=> \(x+2015=0\)    (do  1/2010 + 1/2009 + 1/2008 # 0 )

<=>   \(x=-2015\)

Vậy...

b)  mạo phép chỉnh đề

   \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+344}{5}=0\)

<=>  \(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+344}{5}-3=0\)

<=>  \(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{5}=0\)

làm tương tự a

26 tháng 9 2017

Cho x,y là các số nguyên dương, chứng minh rằng:

\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)

28 tháng 3 2019

sai đề