Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không bày bn cách giải, nhưng sẽ gợi ý:
2 bài tương tự nhau, mẫu gấp nhau 3 lần nhé
\(A=\frac{2}{3}+\frac{2}{15}+...+\frac{2}{143}\)
\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{11\cdot13}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(A=1-\frac{1}{13}=\frac{12}{13}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(=3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(=3.A\)với \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(\Rightarrow2^2A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)\)
\(\Rightarrow2^2A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(\Rightarrow4A-A=2-\frac{1}{2^9}\)
\(\Rightarrow3A=2-\frac{1}{512}=\frac{1023}{512}\Rightarrow A=\frac{1023}{512}:3\)
\(\Rightarrow\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}=3.\left(\frac{1023}{512}:3\right)=\frac{1023}{512}\)
\(\frac{1}{10}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdot\frac{6}{5}\cdot\frac{5}{4}\cdot\frac{4}{3}\cdot\frac{3}{2}=\frac{1}{10}\)
\(\frac{1}{10}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times\frac{5}{6}\times\frac{6}{5}\times\frac{5}{4}\times\frac{4}{3}\times\frac{3}{2}\)\(\frac{3}{2}\)
\(=\frac{1}{10}\times\left(\frac{2}{3}\times\frac{3}{2}\right)\times\left(\frac{3}{4}\times\frac{4}{3}\right)\times\left(\frac{4}{5}\times\frac{5}{4}\right)\times\left(\frac{5}{6}\times\frac{6}{5}\right)\)
\(=\frac{1}{10}\times1\times1\times1\times1\)
\(=\frac{1}{10}\)
#Chúc bạn học tốt !
#k cho mình nhé ?
=1/2-1/4+1/4-1/6+1/6-1/8+...+1/2014-1/2016
=1/2-1/2016
=1007/2016
TK va ket ban nhe
Ta có:
1-11/12=1/12
1-34/35=1/35
Vì 1/12>1/35 nên 34/35 >11/12
À ,CÒN 1+1=2
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times...\times\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(1.a,\frac{5}{7}=\frac{5.9}{7.9}=\frac{45}{63};\frac{4}{9}=\frac{4.7}{9.7}=\frac{28}{63}.\)
\(b,\frac{7}{15},\frac{5}{3}=\frac{5.5}{3.5}=\frac{25}{15}\)
\(c,\frac{11}{12}=\frac{11.4}{12.4}=\frac{44}{48};\frac{7}{48}\)
\(d,\frac{3}{2}=\frac{3.3}{2.3}=\frac{9}{6};\frac{2}{3}=\frac{2.2}{3.2}=\frac{4}{6}\)
\(e,\frac{1}{3}=\frac{1.4}{3.4}=\frac{4}{12};\frac{5}{4}=\frac{5.3}{4.3}=\frac{15}{12};\frac{10}{12}\)
=[2/3+2/99]+[2/35+2/63]+2/15
=24/99+[4/45+2/15]
=24/99+2/9
=46/99
\(=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
\(=\frac{1}{2}\times\left(\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+\frac{2}{9}-\frac{2}{11}\right)\)
\(=\frac{1}{2}\times\frac{20}{11}=\frac{10}{11}\)