Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= 200- (3+\(\frac{2}{3}+\frac{2}{4}+.....+\frac{2}{100}\))
=\(197-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(\frac{197.2}{2}-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(2.\left(\frac{196+1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{196}{2}+\frac{1}{2}-\frac{1}{3}-.....-\frac{1}{100}\right)\)
=\(2\left(98+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+.....+1-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+.....+\frac{99}{100}\right)\)
Khi đó \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=\(\frac{2\left(\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=2(đpcm)
ta có 200-(3+\(\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\)
=\(1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
thay \(2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
ta có \(\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\left(dpcm\right)\)
Ta có \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)
\(\Rightarrow A=2\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
Đặt A là tên biểu thức trên
Ta có: \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+....+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)}\)
\(A=2\)