Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
_ giải bừa :v _
\(T=\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}\)
Ta thấy : \(\frac{1}{4^2}< \frac{1}{2.4};\frac{1}{14^2}< \frac{1}{12.14}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{14^2}< \frac{1}{2^2}+\frac{1}{2.4}+...+\frac{1}{12.14}\)
\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}\left(\frac{2}{2.4}+...+\frac{2}{12.14}\right)\)
\(\Rightarrow T< \frac{1}{2^2}+\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{14}\right)\)
\(\Rightarrow T< \frac{1}{4}+\frac{1}{2}.\frac{3}{7}\)
\(\Rightarrow T< \frac{13}{28}\)
Mà \(\frac{13}{28}< \frac{1}{2}\Rightarrow T< \frac{1}{2}\)
....
d) \(\frac{x}{-9}=\left(\frac{2}{6}\right)^2\)
\(\Rightarrow\frac{x}{-9}=\frac{2}{6}.\frac{2}{6}\)
\(\Rightarrow\frac{x}{-9}=\frac{4}{36}\)
\(\Rightarrow\frac{x}{-9}=\frac{1}{9}\)
\(\Rightarrow\frac{-x}{9}=\frac{1}{9}\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=1\)
e) \(\frac{a}{b}+\frac{3}{6}=0\)
\(\Rightarrow\frac{a}{b}=0-\frac{3}{6}\)
\(\Rightarrow\frac{a}{b}=0-\frac{1}{2}\)
\(\Rightarrow\frac{a}{b}=\frac{-1}{2}\)
\(\Rightarrow a=-1;b=2\)
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
\(N=\frac{4}{3}a-\left(\frac{1}{4}b+\frac{13}{12}b\right)\)
\(N=\frac{4}{3}a-\frac{4}{3}b\)
\(N=\frac{4}{3}\left(a-b\right)\)
\(N=\frac{4}{3}.\frac{3}{8}\)
\(N=\frac{1}{2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(.\) \(.\)
\(.\)
\(.\) \(.\)
\(.\) \(.\)
\(\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}\)
Mà \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2012\cdot2013}=1-\frac{1}{2013}< 1\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2013^2}< 1\)
Nhớ k cho mình nhé!
Chúc các bạn học tốt!
\(\frac{1}{9}+\frac{8}{9}=\frac{1+8}{9}=\frac{9}{9}=1\)
\(\frac{1}{12}+\frac{2}{12}+\frac{6}{12}+\frac{3}{12}=\frac{1+2+6+3}{12}=\frac{12}{12}=1\)
Chúc bạn học tốt !!
\(\frac{1}{9}\)+\(\frac{8}{9}\)=\(\frac{1+8}{9}\)=\(\frac{9}{9}\)=\(1\)
\(\frac{1}{12}\)+\(\frac{2}{12}\)+\(\frac{6}{12}\)+\(\frac{3}{12}\)=\(\frac{1+2+6+3}{12}\)=\(\frac{12}{12}\)=\(1\)