K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)

13 tháng 8 2015

a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}<1\)

\(\text{Vậy }\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)

 

27 tháng 7 2017

sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)

29 tháng 4 2018

Mk chỉ làm đc bài 2 thôi!

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(\Rightarrow2S-S=6-\frac{3}{2^9}\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt ( sai thì đừng ném đá ) !

29 tháng 4 2018

Ta có :

A = \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)\(\frac{1}{1.1}+\frac{1}{1.2}+...+\frac{1}{49.50}\)

A < \(1-1+1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

A < 1 - 1/50 = 49/50 < 2

Vậy A < 2

30 tháng 4 2019

Bài làm

a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)

           = \(1-\frac{9}{9^{100}+1}\)

\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)

      = \(1-\frac{10}{10^{99}-1}\)

Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)

nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)

\(\Rightarrow A< B\)

30 tháng 4 2019

Bài làm

b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)

          = \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)

\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)

     = \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)

Vì \(1+5^9.3< 1+6^9.4\)

nên A < B

14 tháng 3 2020

Ta có: 

\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)

\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)

\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)

\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)

=> A > B.