Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/4.2/6.3/8.4/10.........30/62.31/64=4x
=1/2.1/2.1/2.1/2.............1/2.1/64=4^x
=1/2^30.1/2^6=4^x
=1/2^36=4^x
=1/4^18=4^x
=>x=-18
\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}.....\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
\(\Leftrightarrow\dfrac{1}{2.2}.\dfrac{2}{2.3}.\dfrac{3}{2.4}.\dfrac{4}{2.5}.\dfrac{5}{2.6}.....\dfrac{30}{2.31}.\dfrac{31}{2.32}=2^x\)
\(\Leftrightarrow\dfrac{1.2.3.4.5.....30.31}{2.2.2.3.2.4.2.5.2.6.....2.31.2.32}=2^x\)
\(\Leftrightarrow\dfrac{2.3.4.5.....30.31}{2^{31}.32.\left(2.3.4.5.....31\right)}=2^x\)
\(\Leftrightarrow\dfrac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\dfrac{1}{2^{36}}=2^x\)
\(\Leftrightarrow2^{-36}=2^x\)
\(\Leftrightarrow x=-36\)
b) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^5.\left(1+1+1+1+1+1\right)}{2^5.\left(1+1\right)}\)
\(=\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=\frac{4^6}{3^6}.\frac{6^6}{2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Ta có: \(2^{12}=\left(2^3\right)^4=8^4\)
Vậy x= 4
Bài làm:
Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)
a.4^7
b.8^5
c.cho x mk sẻ tính kết quả nhưng tìm xmk ko tính đâu
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}....\frac{100}{101}\)
Nhận xét: Nếu \(\frac{a}{b}<1\) thì \(\frac{a+m}{b+m}<1\) với số m> 0 bất kì
=> \(\frac{1}{2}<\frac{2}{3}\)
\(\frac{3}{4}<\frac{4}{5}\)
.......
\(\frac{99}{100}<\frac{100}{101}\)
=> \(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}<\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)=> A < B
=> A . A < A.B <=> A2 < \(\left(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)
=> \(A<\frac{1}{\sqrt{101}}\) (ĐPCM)
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
\(=\frac{1.2.3.4...30.31}{2.2.2.3.2.4.2.5...2.31.2.32}\)
\(=\frac{1.2.3.4...30.31}{2^{31}.\left(2.3.4.5...31\right).32}\)
\(=\frac{1}{2^{31}.32}\)
\(=\frac{1}{2^{31}.2^5}\)
\(=\frac{1}{2^{36}}\)