Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:\(M=\frac{1}{2}\cdot\frac{3}{4}...\frac{9999}{10000}\)
\(N=\frac{2}{3}\cdot\frac{4}{5}...\frac{10000}{10001}\)
Dễ dàng nhận thấy: \(\frac{1}{2}<\frac{2}{3};\frac{3}{4}<\frac{4}{5};...;\frac{9999}{10000}<\frac{10000}{10001}\)
\(\Rightarrow\)M < N
Mặt khác:
\(M.N=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}...\frac{10000}{10001}\right)\)
\(M.N=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(M.N=\frac{1.2.3...9999.10000}{2.3.4...10000.10001}\)
\(M.N=\frac{1}{10001}\)
Mà M < N \(\Rightarrow\)M.M<M.N
Hay \(M.M<\frac{1}{10001}<\frac{1}{10000}=\frac{1}{100}\cdot\frac{1}{100}\)
\(\Rightarrow M<\frac{1}{100}\)(đpcm)
Ta có :
\(A<\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.............\frac{10000}{10001}=M\)
=> A.A < A.M = \(\frac{1}{10001}\)
=> A2 < \(\frac{1}{10000}=\left(\frac{1}{100}\right)^2\)
=> A < \(\frac{1}{100}\)
k nha bạn
Ta có:
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< D\)
Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)
Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)
Hay \(C\cdot C< \frac{1}{10001}\)
\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)
Vậy \(C< \frac{1}{100}\left(đpcm\right)\)
Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)
Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)
Mặt khác ta thấy:
\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)
\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)
\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)
Rút gọn phép tính \(C.N\)
\(C.N=\frac{1}{10001}\)
\(C.C< N\Rightarrow C.C< C.N\)
Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)
\(\Rightarrow C< \frac{1}{10000}\)(đpcm)
Đặt :
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}\)
Đặt :
B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{9998}{9999}.\frac{10000}{10000}\)
Ta thấy " A<B
\(\Rightarrow A.A< A.B=\frac{1}{100^2}\\ \Rightarrow A^2< \frac{1}{100^2}\\ \Rightarrow A< \frac{1}{100}\)
Đặt \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}\)\(\left(A>0\right)\)
.Và \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\)\(\left(B>0\right)\)
Mặt khác :
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
... ... ...
\(\frac{9999}{10000}< \frac{10000}{10001}\)
Nhân tất cả vế theo vế \(\Rightarrow A< B\Rightarrow A^2< A.B\left(2\right)\)
(1),(2) \(\Rightarrow A^2< \frac{1}{10001}\Rightarrow A< \sqrt{\left(\frac{1}{10001}\right)}< \sqrt{\left(\frac{1}{10000}\right)}=\frac{1}{100}\left(ĐPCM\right)\)
A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)
Mà A=1+B=>A=1+B<1+1=2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)
B)
ta có : \(1=1\)
\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)
\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)
\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)
tất cả công lại \(\Rightarrow B< 6\)
a) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.................
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< 1-\frac{1}{2014}< 1\)
\(\Rightarrow B< 1\)
\(\Rightarrow1+B< 1+1\)
Hay \(A< 2\)
C) Ta có: \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
.................
\(\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< \frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\)
\(\Rightarrow C^2< \left(\frac{1}{2}.\frac{3}{4}.....\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\right)\)
\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)
\(\Rightarrow C^2< \frac{1}{10000}\)
\(\Rightarrow C< \frac{1}{100}\)