K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

\(\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{2.1}\)

\(=\frac{1}{2003.2002}-\left(\frac{1}{1.2}+\frac{1}{3.2}+...+\frac{1}{2001.2002}\right)\)

\(=\frac{1}{2003.2002}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\right)\)

\(=\frac{1}{2003.2002}-\left(1-\frac{1}{2002}\right)\)

\(=\frac{1}{2003.2002}-\frac{2001}{2002}\)

\(E=\frac{2}{3.5}+\frac{7}{5.12}+\frac{9}{4.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{12}+\frac{27}{12.39}=\frac{1}{3}-\frac{1}{12}+\frac{1}{12}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)

 

6 tháng 7 2019

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}=...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right).\)

\(=-\left(1-\frac{1}{100}\right)=-\frac{99}{100}\)

chúc bạn học tốt

6 tháng 7 2019

Trả lời

1/100.99-1/99.98-1/98.97-...-1/3.2-1/2.1

=1/100-1/1

=1/100-100/100

=-99/100.

17 tháng 1 2016

S=\(\frac{1}{100}-\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-......-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)\(=1-\frac{1}{100}-\frac{2}{99}\)\(=\frac{9601}{9900}\)

17 tháng 1 2016

tính phải ko

 

15 tháng 8 2016

\(A=\)\(-\frac{1}{101}-\frac{1}{101.100}-\frac{1}{100.99}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(A=\)-\(\frac{1}{101}-\)\(\left(\frac{1}{101.100}+\frac{1}{100.99}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(A=\)\(-\frac{1}{101}-\)\(\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}+\frac{1}{100.101}\right)\)

\(A=\)\(-\frac{1}{101}\)\(-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\right)\)

\(A=-\frac{1}{101}-\)\(\left(1-\frac{1}{101}\right)\)

\(A=-\frac{1}{101}-1+\frac{1}{101}\)

\(A=\left(-\frac{1}{101}+\frac{1}{101}\right)-1\)

\(A=0-1=-1\)

22 tháng 6 2018

\(D=\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(D=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(D=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(D=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{99}\right)\)

\(D=\frac{1}{99}-\frac{1}{100}-1+\frac{1}{99}\)

b tự làm nốt nhé

22 tháng 6 2018

D=1100.99 −199.98 −198.97 −...−13.2 −12.1 

D=199.100 −(11.2 +12.3 +...+197.98 +198.99 )

D=199 −1100 −(1−12 +12 −13 +...+198 −199 )

D=199 −1100 −(1−199 )

D=199 −1100 −1+199 

11 tháng 3 2020

A= 5/2.1 + 4/1.11 + 3/11.2 + 1/2.15 + 13/5.4

A/7 = 5/2.7 + 4/7.11 + 3/11.13 + 1/14.17 + 13/ 17.20

A/7= 1/2 - 1/7 +1/7 - 1/11 + 1/11 -1/13 + 1/14 - 1/17 + 1/17- 1/20

A/7= 1/2-1/20

A/7= 9/20

A= 9/20 .7

A= 63/20

14 tháng 8 2021

D =1/99 -1/99.98-1/98.97-...-1/3.2-1/2.1
=1/99-(1/99.98+1/98.97-...-1/3.2+1/2.1)
=1/99-(1/1.2+1/2.3+1/3.4+...+1/98.99)
=1/99-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/98-1/99)

=1/99-(1/1-1/99)
=1/99-98/99
=-97/99

14 tháng 8 2021

Bạn tham khảo :

Lấy bài tại link : https://olm.vn/hoi-dap/detail/243536225427.html

undefined

#Duongw

23 tháng 1 2020

\(a,A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)

\(=\frac{-1}{4.5}+\frac{-1}{5.6}+\frac{-1}{6.7}+\frac{-1}{7.8}+\frac{-1}{8.9}+\frac{-1}{9.10}\)

\(=\frac{-1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}-...-\frac{1}{9}+\frac{1}{10}\)

\(=-\frac{1}{4}+\frac{1}{10}\)

\(=-\frac{3}{20}\)

\(b,B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

\(\frac{B}{7}=\frac{5}{2.7}+\frac{4}{11.7}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-....-\frac{1}{28}\)

\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

23 tháng 1 2020

a) \(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)

\(\Rightarrow-1.A=\frac{1}{20}+\frac{1}{30}+........+\frac{1}{90}\)

\(=\frac{1}{4.5}+\frac{1}{5.6}+........+\frac{1}{9.10}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{9}-\frac{1}{10}=\frac{1}{4}-\frac{1}{10}=\frac{3}{20}\)

\(\Rightarrow A=\frac{3}{20}:\left(-1\right)=\frac{-3}{20}\)

b) \(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)

\(\Rightarrow\frac{1}{7}B=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)

\(=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(\Rightarrow B=\frac{13}{28}:\frac{1}{7}=\frac{13}{28}.7=\frac{13}{4}\)