K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

Vãi cả nhân :V

\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+\frac{2}{5\cdot6}\\ =2\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\\ =2\left(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+\frac{5-4}{4\cdot5}+\frac{6-5}{5\cdot6}\right)\\ =2\left(\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+\frac{4}{3\cdot4}-\frac{3}{3\cdot4}+\frac{5}{4\cdot5}-\frac{4}{4\cdot5}+\frac{6}{5\cdot6}-\frac{5}{5\cdot6}\right)\\ =2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{6}\right)\\ =2\left(1-\frac{1}{6}\right)\\ =2\cdot\frac{5}{6}=\frac{10}{6}\)

Chúc bạn học tốt nhaok.

27 tháng 7 2019

Ng ta năm nay mới lên lớp 6, dùng x là đúng r, ngày trc chúng mik cx vậy mà.

19 tháng 6 2018

a) \(\frac{2^{12}x3^5-4^6.9^2}{\left(2^2x3\right)^6+8^4x3^5}=\frac{2^{12}x3^5+\left(2^2\right)^6x\left(3^2\right)^2}{2^{12}x3^6+\left(2^3\right)^4x3^5}\)

\(=\frac{2^{12}x3^5-2^{12}x3^4}{2^{12}x3^6+2^{12}x3^5}=\frac{2^{12}x3^4x\left(3-1\right)}{2^{12}x3^5x\left(3+1\right)}\)

\(=\frac{2}{3.4}=\frac{1}{3.2}=\frac{1}{6}\)

b) \(\frac{1}{9x10}-\frac{1}{8x9}-\frac{1}{7x8}-\frac{1}{6x7}-\frac{1}{5x6}-\frac{1}{4x5}-\frac{1}{3x4}-\frac{1}{2x3}-\frac{1}{1x2}\)

\(=-\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}+\frac{1}{7x8}+\frac{1}{8x9}+\frac{1}{9x10}\right)\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=-\left(1-\frac{1}{10}\right)\)

\(=\frac{-9}{10}\)

sorry bn nha! mk ko bk lm phần c

6 tháng 10 2019

trả lời :

a) 1/6

b)-9/10

19 tháng 7 2015

a) \(\frac{3}{40}+\frac{5}{3}+\frac{7}{60}=\frac{9}{120}+\frac{200}{120}+\frac{14}{120}=\frac{223}{120}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

19 tháng 7 2015

truong giang làm sai câu a rùi

21 tháng 5 2017

B = \(\frac{3^2}{2.4}+\frac{3^2}{4.6}+\frac{3^2}{6.8}+...+\frac{3^2}{198.200}\)

B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{3^2}{2}.\left(\frac{1}{4}-\frac{1}{6}\right)+\frac{3^2}{2}.\left(\frac{1}{6}-\frac{1}{8}\right)+...+\frac{3^2}{2}.\left(\frac{1}{198}-\frac{1}{200}\right)\)

B = \(\frac{3^2}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{198}-\frac{1}{200}\right)\)

B = \(\frac{9}{2}.\left(\frac{1}{2}-\frac{1}{200}\right)\)

B = \(\frac{9}{2}.\frac{99}{200}\)

B = \(\frac{891}{400}\)

D = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + ... + 48 x 49

3D = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + 4 x 5 x 3 + ... + 48 x 49 x 3

3D = 1 x 2 x 3 + 2 x 3 x ( 4 - 1 ) + 3 x 4 x ( 5 - 2 ) + 4 x 5 x ( 6 - 3 ) + ... + 48 x 49 x ( 50 - 47 )

3D = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + 4 x 5 x 6 - 3 x 4 x 5 + ... + 48 x 49 x 50 - 47 x 48 x 49

3D = 48 x 49 x 50

D = ( 48 x 49 x 50 ) : 3

D = 39200

E = 12 + 22 + 32 + ... + 482

E = 1 x 1 + 2 x 2 + 3 x 3 + ... + 48 x 48

E = 1 x ( 2 - 1 ) + 2 x ( 3 - 1 ) + 3 x ( 4 - 1 ) + ... + 48 x ( 49 - 1 )

E = 1 x 2 - 1 + 2 x 3 - 2 + 3 x 4 - 3 + ... + 48 x 49 - 49

E = ( 1 x 2 + 2 x 3 + 3 x 4 + ... + 48 x 49 ) - ( 1 + 2 + 3 + ... + 49 )

Ta tính được vế trong ngoặc thứ nhất là 39200 , còn vế trong ngoặc thứ hai là 1225

thay vào ta được :

E = 39200 - 1225

E = 37975 

21 tháng 5 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow A=1-\frac{1}{2^{100}}\)

7 tháng 4 2016

1/1x2+1/2x3+...+1/49x50

=1-1/2+1/2-1/3+.....+1/49-1/50

=1-1/50(1)

Ta co   1(2)

So sanh (1) voi (2) ta thay 1-1/50<1

=>1/1x2+...+1/49x50<1

(Phuong phap khu)

7 tháng 4 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<1\)

Vậy \(\frac{49}{50}<1\)

22 tháng 10 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(S=1-\frac{1}{2011}\)

\(S=\frac{2010}{2011}\)

22 tháng 10 2016

=1+2x2+3x3+4x...x2010+2011 =1x2+2x3+3x4+...+2010x2011 =1x2011 =2011

8 tháng 8 2016

\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\)

  \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)

     \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{30}\right)=\frac{1}{4}.\frac{2}{15}=\frac{1}{30}\)

\(B=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{8.9}\)\(=5.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)     \(=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)

  \(=5.\left(\frac{1}{2}-\frac{1}{9}\right)=5.\frac{7}{18}=\frac{35}{18}\)

\(C=\left(\frac{7^2}{2.9}+\frac{7^2}{9.16}+....+\frac{7^2}{65.72}\right):\left(\frac{1}{3}-\frac{7}{36}\right)\)

   \(=7.\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right):\frac{5}{36}\) \(=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right):\frac{5}{36}\)'

    \(=7.\left(\frac{1}{2}-\frac{1}{72}\right):\frac{5}{36}=7.\frac{35}{72}:\frac{5}{36}=\frac{49}{2}\)

\(D=\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}+\frac{2}{38.39.40}\)

     \(=2.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}+\frac{1}{38.39.40}\right)\)

     \(=2.\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}+\frac{1}{38.39}-\frac{1}{39.40}\right)\)

        \(=\frac{1}{2.3}-\frac{1}{39.40}=\frac{259}{1560}\)

\(E=\frac{202202}{1212}+\frac{202202}{2020}+\frac{202202}{3030}+\frac{202202}{4242}+\frac{202202}{5656}\)

    \(=202202.\left(\frac{1}{3.4.101}+\frac{1}{4.5.101}+\frac{1}{5.6.101}+\frac{1}{6.7.101}+\frac{1}{7.8.101}\right)\)

      \(=2002.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)

        \(=2002.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

         \(=2002.\left(\frac{1}{3}-\frac{1}{8}\right)=2002.\frac{5}{24}=\frac{5005}{12}\)

     

    

7 tháng 2 2020

H = \(\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

   \(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

Đặt G = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

          = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

          = \(1-\frac{1}{100}\)

           = \(\frac{99}{100}\)

Đặt K = \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

=>2K = \(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{99.100.101}\right)\)

          = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)

          = \(\frac{1}{1.2}-\frac{1}{100.101}\)

          = \(\frac{1}{2}-\frac{1}{10100}\)

          = \(\frac{5049}{10100}\)

=> K =\(\frac{5049}{10100}:2=\frac{5049}{10100}.\frac{1}{2}=\frac{5049}{20200}\)

Thay G,K vào H ta có :

H = \(\frac{99}{100}-\frac{5049}{20200}\)

Tự tính :)

7 tháng 2 2020

\(H=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.34}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{99}{100}-\frac{1}{2}.\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)