Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)
=> còn lại thì bạn có thể tự chứng minh
\(Q=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(Q=1-\frac{1}{n+1}=\frac{n}{n+1}\)
gọi d là UCLN của n,(n+1) ta có:
\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow d=1}\)
=> Q là p/s tối giãn mà n khác 0 => Q ko thuộc Z
\(F=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{n-1}{n}\)
\(\Rightarrow F=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(\Rightarrow F=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}\left(đpcm\right)\)
\(H=2+4+6+...+2n\)
Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :
Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)
=> Bài toán đã được cm
Ta có : 1/ 1.2 + 1/ 2.3 + 1/ 3.4 + ... + 1/ n.( n + 1 ) .
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/n - 1/ n+1 .
= 1 - 1/ n + 1 .
= n+1 / n+1 - 1/ n+1 .
= n/ n+1 .
Đáp sô : n/ n+1
Ta có công thức :
\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}=\frac{n-1}{n}\)