Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(dk,x\ne7;x\ne0\)
\(\frac{4x+13}{5x\left(x-7\right)}-\frac{x-48}{5x\left(7-x\right)}=\frac{4x+13}{5x\left(x-7\right)}+\frac{x-48}{5x\left(x-7\right)}=\frac{\left(4x+13\right)+\left(x-48\right)}{5x\left(x-7\right)}\\ \)
\(=\frac{5x-35}{5x\left(x-7\right)}=\frac{5\left(x-7\right)}{5x\left(x-7\right)}=\frac{1}{x}\)
b)
\(\frac{1}{x-5x^2}-\frac{25x-15}{25x^2-1}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{1-\left(5x\right)^2}=\frac{1}{x\left(1-5x\right)}+\frac{25x-15}{\left(1-5x\right)\left(1+5x\right)}\)
\(\frac{1+5x}{x\left(1-5x\right)\left(1+5x\right)}+\frac{x\left(25x-15\right)}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-15x+5x+1}{x\left(1-5x\right)\left(1+5x\right)}=\frac{25x^2-10x+1}{x\left(1-5x\right)\left(1+5x\right)}\)
\(=\frac{16+x}{x^2-2x}-\frac{18}{x^2-2x}\)
\(=\frac{16+x-18}{x\left(x-2\right)}\)
\(=\frac{-2+x}{x\left(x-2\right)}\)
a) \(\frac{16+x}{x^2-2x}+\frac{18}{2x-x^2}=\frac{16+x-18}{x^2-2x}=\frac{x-2}{x\left(x-2\right)}=\frac{1}{x}\)
b) \(\frac{2y}{2x^2-xy}+\frac{4x}{xy-2x^2}=\frac{2y-4x}{2x^2-xy}=\frac{-2\left(2x-y\right)}{x\left(2x-y\right)}=\frac{-2}{x}\)
c) \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}=\frac{4-x^2+2x^2-2x+5-4x}{x-3}=\frac{x^2-6x+9}{x-3}=\frac{\left(x-3\right)^2}{x-3}=x-3\)
\(a,\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)
\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)
\(=\dfrac{16+x-18}{x^2-2x}\)
\(=\dfrac{x-2}{x\left(x-2\right)}\)
\(=\dfrac{1}{x}\)
\(b,\dfrac{2y}{2x^2-xy}+\dfrac{4x}{xy-2x^2}\)
\(=\dfrac{2y}{2x^2-xy}-\dfrac{4x}{2x^2-xy}\)
\(=\dfrac{2y-4x}{2x^2-xy}\)
\(=\dfrac{2\left(y-2x\right)}{x\left(2x-y\right)}\)
\(=\dfrac{-2\left(2x-y\right)}{x\left(2x-y\right)}\)
\(=-\dfrac{2}{x}\)
\(c,\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2}{x-3}-\dfrac{2x^2-2x}{x-3}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2-2x^2+2x+5-4x}{x-3}\)
\(=\dfrac{-3x^2-2x+9}{x-3}\)
\(a,\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)
\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)
\(=\dfrac{16+x-18}{x^2-2x}\)
\(=\dfrac{x-2}{x\left(x-2\right)}\)
\(=\dfrac{1}{x}\)
\(b,\dfrac{2y}{2x^2-xy}+\dfrac{4x}{xy-2x^2}\)
\(=\dfrac{2y}{2x^2-xy}-\dfrac{4x}{2x^2-xy}\)
\(=\dfrac{2y-4x}{2x^2-xy}\)
\(=\dfrac{2\left(y-2x\right)}{x\left(2x-y\right)}\)
\(=\dfrac{-2\left(2x-y\right)}{x\left(2x-y\right)}\)
\(=-\dfrac{2}{x}\)
\(c,\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2}{x-3}-\dfrac{2x^2-2x}{x-3}+\dfrac{5-4x}{x-3}\)
\(=\dfrac{4-x^2-2x^2+2x+5-4x}{x-3}\)
\(=\dfrac{-3x^2-2x+9}{x-3}\)
4 x + 13 5 x ( x - 7 ) - x - 48 5 x 7 - x