K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2020

Câu 3:

Phương trình hoành độ giao điểm:

\(x^3=x^2-4x+4\Leftrightarrow x^3-x^2+4x-4=0\Rightarrow x=1\)

\(x^3=0\Rightarrow x=0\)

\(x^2-4x+4=0\Rightarrow x=2\)

Diện tích hình phẳng:

\(S=\int\limits^1_0x^3dx+\int\limits^2_1\left(x^2-4x+4\right)dx=\frac{7}{12}\)

Câu 4:

Phương trình hoành độ giao điểm:

\(x^3-3x+2=x+2\Leftrightarrow x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-2}\left(x^3-3x+2-x-2\right)dx+\int\limits^2_0\left(x+2-x^3+3x-2\right)dx=8\)

NV
20 tháng 4 2020

Câu 1:

Phương trình hoành độ giao điểm: \(cosx=0\Rightarrow x=\frac{\pi}{2}\)

\(\Rightarrow S=\int\limits^{\frac{\pi}{2}}_0cosxdx-\int\limits^{\pi}_{\frac{\pi}{2}}cosxdx=2\)

Câu 2:

Phương trình hoành độ giao điểm: \(x.e^x=0\Rightarrow x=0\)

\(\Rightarrow S=\int\limits^3_0xe^x-\int\limits^0_{-2}xe^xdx\)

Xét \(I=\int x.e^xdx\Rightarrow\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=xe^x-e^x+C=\left(x-1\right)e^x+C\)

\(\Rightarrow S=\left(x-1\right)e^x|^3_0-\left(x-1\right)e^x|^0_{-2}=2e^3+1-\left[-1+\frac{3}{e^2}\right]=2e^3+2-\frac{3}{e^2}\)

6 tháng 5 2020

à xl bạn ngheennn

\n\n

\n
NV
6 tháng 5 2020

Câu 28:

\(\overrightarrow{CB}=\left(1;-1;1\right)\)

Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt

Phương trình (P):

\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)

\(\Leftrightarrow x-y+z+5=0\)

Câu 29:

Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)

Do đó đáp án B đúng (ko tồn tại k thỏa mãn)

Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)

1 tìm một nguyên hàm f(x) của hàm số f(x)=1+3sin3x biết f(\(\frac{\pi}{6}\))=0 2Biết f\(x^3\) ln2xdx =x^4(Aln2+B)+C. Gía trị của 5A+4B là 3Tính I=\(\int_0^{\frac{\pi}{4}}\) tan^2xdx 4 Tính L=\(\int_0^{\pi}\) xsinxdx 5 Khẳng định nào sau đây đúng về kết quả \(\int_1^ex^3lnxdx=\frac{3e^a+1}{b}\) A.a.b=64 B. a.b=46 C . a-b=12 D. a-b=4 6 tính diện tích hình phẳng dc giới hạn bởi đồ thị hàm số y=x^2-4=x^2-2x và hai...
Đọc tiếp

1 tìm một nguyên hàm f(x) của hàm số f(x)=1+3sin3x biết f(\(\frac{\pi}{6}\))=0

2Biết f\(x^3\) ln2xdx =x^4(Aln2+B)+C. Gía trị của 5A+4B là

3Tính I=\(\int_0^{\frac{\pi}{4}}\) tan^2xdx

4 Tính L=\(\int_0^{\pi}\) xsinxdx

5 Khẳng định nào sau đây đúng về kết quả \(\int_1^ex^3lnxdx=\frac{3e^a+1}{b}\)

A.a.b=64 B. a.b=46 C . a-b=12 D. a-b=4

6 tính diện tích hình phẳng dc giới hạn bởi đồ thị hàm số y=x^2-4=x^2-2x và hai đường thẳng x=-3,x=-2

7Tính diện tích hình phẳng dc giới hạn bởi các duong92/x^2-4x+3/ và y =x+3

8the tích vậ tròn xoay khi quay miền(D) giới hạn bởi (d) :y=x,(P):x^2-x khi quay qanh trục Ox là

9 một vật chuyển động dần đều với vận tốc v(t)=160-10t(m/s). Tính quảng đường s mà vật di chuyển trong khoảng thời gian từ điểm t=0(s) đến thời điểm vật dừng lại

10 cho số phức z thỏa mãn \(\frac{z}{1-2i}+\overline{z}=2.tìm\) phần thực a của số phức w=z^2-z là

11 trong mặt phẳng oxy tìm tập hợp điểm biểu diễn các số phức z thỏa mãn /z-i/=/(1+i).z/ là đường tròn có phuong trình

4
NV
10 tháng 5 2020

9.

Vật dừng lại khi \(v=0\Leftrightarrow160-10t=0\Rightarrow t=16\)

\(s=\int\limits^{t_2}_{t_1}v\left(t\right)dt=\int\limits^{16}_0\left(160-10t\right)dt=\left(160t-5t^2\right)|^{16}_0=1280\left(m\right)\)

10.

Đặt \(z=x+yi\)

\(\frac{x+yi}{1-2i}+x-yi=2\Leftrightarrow\left(1+2i\right)\left(x+yi\right)+5x-5yi=10\)

\(\Leftrightarrow6x-2y+\left(2x-4y\right)i=10\)

\(\Rightarrow\left\{{}\begin{matrix}6x-2y=10\\2x-4y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Rightarrow z=2+i\)

\(\Rightarrow w=\left(2+i\right)^2-\left(2+i\right)=1+3i\)

Phần thực bằng 1

11.

Đặt \(z=x+yi\)

\(\left|x+\left(y-1\right)i\right|=\left|\left(1+i\right)\left(x+yi\right)\right|\)

\(\Leftrightarrow\left|x+\left(y-1\right)i\right|=\left|x-y+\left(x+y\right)i\right|\)

\(\Leftrightarrow x^2+\left(y-1\right)^2=\left(x-y\right)^2+\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2+2y-1=0\)

Hoặc dạng chính tắc:

\(x^2+\left(y+1\right)^2=2\)

NV
10 tháng 5 2020

6.

Hổng hiểu đề bài?

Là diện tích hình phẳng giới hạn bởi các đường \(y=x^2-4;y=x^2-2x;x=-3;x=-2\) đúng ko?

Làm theo đề này nhé

Hoành độ giao điểm: \(x^2-4=x^2-2x\Leftrightarrow x=2\notin\left[-3;-2\right]\)

\(x^2-4=0\Leftrightarrow x=\pm2\)

\(x^2-2x=0\Rightarrow x=\left\{0;2\right\}\notin\left[-3;-2\right]\)

Diện tích:

\(S=\int\limits^{-2}_{-3}\left(x^2-2x-\left(x^2-4\right)\right)dx=\int\limits^{-2}_{-3}\left(4-2x\right)dx=\left(4x-x^2\right)|^{-2}_{-3}=9\)

7.

Đề này thì ko dịch nổi

8.

Phương trình hoành độ giao điểm:

\(x^2-x=x\Leftrightarrow x^2-2x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Thể tích:

\(V=\pi\int\limits^2_0\left[x^2-\left(x^2-x\right)^2\right]dx=\pi\int\limits^2_0\left(-x^4+2x^3\right)dx\)

\(=\pi\left(-\frac{1}{5}x^5+\frac{1}{2}x^4\right)|^2_0=\frac{8\pi}{5}\)

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\) là 2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6 3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz) 4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\)...
Đọc tiếp

1trong không gian oxyz, đường thẳng d đi qua điểm A(4;-2;2) và song song với đường thẳng\(\Delta\) \(\frac{x+2}{4}=\frac{y-5}{2}=\frac{z-2}{3}\)

2 trong không gian hệ độ oxyz. tìm tọa độ hình chiếu vuông góc của M(1;1;1) trên mặt phẳng (P) 2x+2y-z+6

3 trong không gian oxyz, cho diểm a(-1;2;-3). tim tọa d965 điểm B đối xứng với điểm A qua mặt phẳng (oyz)

4trong không gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) :2x+2y-z+9=0 điểm A(1;2;-3). diểm đối xứng của a qua mặt phẳng \(\alpha\)

5 khẳng định nào sau đây là sai?

A\(\int\) \(f^,\)(x)dx=F(x)+C B \(\int\) k.f(x)dx=k.\(\int\) f(x)dx C \(\int\)f(x)dx=F(x)+C D\(\int\)[f(x)-g(x)]dx=\(\int\)f(x)dx-\(\int\)g(x)dx

6 gọi z1,z2,z3,z4 là bốn nghiệm của pt z^4-4z^3+7z^2-16z+12=0. tính z1^2+z2^2+z3^2+z4^2

7 trong khong gian oxyz, cho mặ phẳng (p):x+3y-z+9=0 và đương thẳng d có phương trình\(\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-3}\) . tìm tọa độ giao điểm I của mp (P) va đường thẳng d

8 tính tích phân I=\(\int_{\frac{1}{e}}^e\) \(\frac{dx}{x}\)

9 trong không gian với hệ trục tọa độ oxyz, cho điểm A(1;-1-2) và đương thẳng d \(\frac{x-1}{1}=\frac{y+1}{1}=\frac{z}{2}\) . Phương trình mặt phẳng (P) qua điểm A và chứa đường thẳng d là

10 tính thể tích khối tròn xoay khi quay hình phẳng (D) :y=x^2-dx+4,y=0,x=0 qanh trục ox

11 cho F(x)=x^2 là một nguyên hàm của hàm số f(x)e^2x. tìm nguyên hàm của hàm số f phẩy(x)e^2x

12 diện tích hình phẳng giới hạn bởi các đồ thị ham số y=(e+1)x và y=(1+e^x) là

13 trong không gian với hệ tọa độ (oxyz) cho A(1;2;-3) hính chiếu vuông góc của điểm A trên trục ox là

14 trong không gian với hệ trưc tọa độ oxyz, cho mp(P):2x+y-2z-1=0 và đường thẳng d:\(\frac{x-2}{1}=\frac{y}{-2}=\frac{z+3}{3}\) . pt mp chứa d và vuông góc với(P) là

15 diện tích hình phẳng giới hạn bởi hai đường thẳng x+0,x=\(\pi\) và đô thị của hai hàm số y=cosx,y=sinx là

6
NV
12 tháng 5 2020

14.

Mặt phẳng (P) nhận \(\overrightarrow{n}=\left(2;1;-2\right)\) là 1 vtpt

Đường thẳng d nhận \(\overrightarrow{u}=\left(1;-2;3\right)\) là 1 vtcp

Điểm \(M\left(2;0;-3\right)\) thuộc d nên cũng thuộc (Q)

(Q) vuông góc (P) và chứa d nên nhận \(\left[\overrightarrow{n};\overrightarrow{u}\right]=\left(1;8;5\right)\) là 1 vtpt

Phương trình (Q):

\(1\left(x-2\right)+8y+5\left(z+3\right)=0\)

\(\Leftrightarrow x+8y+5z+13=0\)

15.

Phương trình hoành độ giao điểm:

\(sinx=cosx\Rightarrow x=\frac{\pi}{4}\)

\(S=\int\limits^{\frac{\pi}{4}}_0\left(cosx-sinx\right)dx+\int\limits^{\pi}_{\frac{\pi}{4}}\left(sinx-cosx\right)dx=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

NV
12 tháng 5 2020

10.

Coi lại đề nào bạn, pt hình phẳng (D) có vấn đề, nhìn chữ -dx+4 kia ko biết phải nghĩ sao

11.

Cũng ko dịch được đề này, đoán đại: cho \(F\left(x\right)=x^2\) là 1 nguyên hàm của \(f\left(x\right).e^{2x}\). Tìm nguyên hàm của \(f'\left(x\right).e^{2x}\)

\(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=e^{2x}f\left(x\right)-2\int f\left(x\right)e^{2x}dx=e^{2x}f\left(x\right)-2x^2+C\)

12.

Đúng là \(y=\left(e+1\right)x\)\(y=1+e^x\) chứ bạn? Hai đồ thị này cắt nhau tại 2 điểm, nhưng ko thể tìm được tọa độ của điểm thứ 2 đâu

13.

Hình chiếu của A lên Ox có tọa độ \(\left(1;0;0\right)\)

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2) 2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9) 3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2) 4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là 5 diện tích hình phẳng...
Đọc tiếp

1 f(x) là một nguyên hàm của hàm số f(x)=1/2x-1 biết f(1)=2 . tính f(2)

2 cho hàm số f(x) liên tục trên R và F(x) là nguyên hàm của f(x) biết \(\int_0^9\) f(x)dx=9 và f(0)=3. tính f(9)

3 biết f(x) là một nguyên hàm của hàm số f(x) =1/2x+1 và f(0)=1. tính giá trị f(2)

4 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=xe^x , trúc hoành và hai đường thẳng x=-2, x=3 có công thức là

5 diện tích hình phẳng giới hạn bởi đồ thị hàm số y=-x^2 +4 , trục hoành và các đường thẳng x=0,x=3 là

6 diện tích giới hạn bởi đường thẳng x=0,x=\(\pi\) đồ thị hàm số cosx và trục ox la

7 công thức tính diện tích hình phẳng giới hạn bởi đồ thị y=f(x) trục ox và hai đường thẳng x=a, x=b (a<b) là

8diện tích hình phẳng giới hạn bởi đồ thị hàm số y =x^2+3 và y=4x là

9 ính diện tích hình phẳng giới hạn bởi y=-x^2+2x;y=-3x

10 diện tích hình phẳng giới hạn bởi hai đường hảng x=0,x=\(\pi\) , đồ thị hàm số y=cosx và trục ox là

11 gọi S là diện tích hình phẳng giới hạn bởi các đường y=x^3,y=2 và y=0 là

12 tính thể tích V của vật ròn xoay tạo thành khi quay hình phẳng (h) giới hạn bởi các đường y=x^2;y=\(\sqrt{x}\) quanh trục ox

13 cho phần vậy thể B giới hạn bởi hai mặt phẳng có phương trình x=0, x-\(\frac{\pi}{3}\)cắt phần vật thể B bởi mặ phẳng vuông góc trục ox tại điểm có hoành độ x(0\(\le x\le\frac{\pi}{3}\) ta được thiết diện là mộ tam giác vuông có độ dài hai cạnh lần lượt là 2x và cosx. thể tích vật thể B là

14 thể tích V của vật thể nằm giữa hai mặt phẳng x=0 , x= \(\pi\) biết rằng thiết diện của vật có thể bị cắt bởi mặt phẳng vuông góc trục ox tại điểm có hoành độ x \(0\le x\le1\) được thiết diện là hình vuông có cạnh (x+1)

15 Tính thể tích của vật thể nằm giữa hai mặt phẳng x=−1x=−1x=1x=1, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục OxOx có hoành độ x(−1≤x≤1)x(−1≤x≤1) là một tam giác vuông cân với cạnh 2\(\sqrt{1-x^2}\) thể tích vật thể là

16 cho hai số phức z=a+bi ,\(z^,\)=c+di. hai số phức z=\(z^,\) khi

a {a=c, bi=di} B {a=d,b=c} C {a=c,b=d} D(a=b,c=d}

17cho số phức z=3-2i tim phẩn ảo của số phức liên hợp z

18 cho số phức z= 3+2i . tìm phần thực của số phức z^2

19 cho hai số phức z=1+3i ,w=2-i tim phẩn ảo của số phức u=\(\overline{z}\) .w

20 trong mặt phẳng oxy, cho điểm A(4,0),B(1;4) và C(1;-1) . GỌI G là trọng tâm tam giác ABC . Biết rằng G là biểm biểu diễn số phức z là

A z=3+3/2i B=3-3/2i C z=2-i D z=2+i

21 cho số phức thỏa (1-i)+4\(4\overline{z}\) =7-7i .Mô đun của số phức z là

7
NV
16 tháng 5 2020

19.

\(\overline{z}=1-3i\)

\(\Rightarrow u=\left(1-3i\right)\left(2-i\right)=2+3i^2-7i=-1-7i\)

Phần ảo bằng -7

20.

Tọa độ G: \(\left\{{}\begin{matrix}x_G=\frac{x_A+x_B+x_C}{3}=2\\y_G=\frac{y_A+y_B+y_C}{3}=1\end{matrix}\right.\)

Biểu diễn trên mặt phẳng phức: \(z=2+i\)

21.

Đề đúng là \(\left(1-i\right)+44\overline{z}=7-7i\) chứ?

\(\Rightarrow44\overline{z}=6-6i\Rightarrow\overline{z}=\frac{3}{22}-\frac{3}{22}i\)

\(\Rightarrow z=\frac{3}{22}+\frac{3}{22}i\Rightarrow\left|z\right|=\sqrt{\left(\frac{3}{22}\right)^2+\left(\frac{3}{22}\right)^2}=\frac{3\sqrt{2}}{22}\)

NV
16 tháng 5 2020

15.

Diện tích thiết diện:

\(S=\frac{1}{2}\left(2\sqrt{1-x^2}\right)^2=2\left(1-x^2\right)=2-2x^2\)

Thể tích:

\(S=\int\limits^1_{-1}\left(2-2x^2\right)dx=\frac{8}{3}\)

16.

\(z=z'\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\) (phần thực bằng phần thực, phần ảo bằng phần ảo)

17.

\(\overline{z}=3+2i\Rightarrow\) phần ảo là 2 (không phải 2i đâu)

18.

\(z=3+2i\Rightarrow z^2=\left(3+2i\right)^2=9+4i^2+12i=5+12i\)

\(\Rightarrow\) phần thực bằng 5

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx A. P=7 B.P=-4 C.P=4 D.P=10 2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là A -tanx B -tanx+1 C tanx+1 D tanx-1 3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c? 4 Tích phân...
Đọc tiếp

1cho hàm số f(x)liên tục trên đoạn [0;10] va\(\int_0^{10}\) f(x)dx=7 và \(\int_2^6\) f(x)dx =3. Tính P=\(\int_0^2\) f(x)dx+\(\int_6^{10}\) f(x)dx

A. P=7 B.P=-4 C.P=4 D.P=10

2 cho f(x) là một nguyên hàm của hàm số y =\(\frac{-1}{cos^2x}\) và f(x)=1. Khi đó , ta có F(x) là

A -tanx B -tanx+1 C tanx+1 D tanx-1

3 Cho A=\(\) \(\int\)x^5.\(\sqrt{1+x^2}\) dx=at^7+bt^5+c^3+C, với t=\(\sqrt{1+x^2}\). Tính A=a-b-c?

4 Tích phân I=\(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}\) \(\frac{dx}{sin^2x}\) bằng

A 1 B 3 C 4 D 2

5 Cho I=\(\int_2^a\) \(\frac{2x-1}{1-x}\)dx, xác định a đề I=-4-ln3

6 diện tích hình phẳng giới hạn bởi các đường cong y=x^3 và y=x^5 bằng

7 Tính thể tích V của khối tròn xoay tạo thành khi ta cho miền phẳng D giới hạn bởi các đường y=sin, trục hoành,x=0, x=\(\frac{\pi}{2}\) quay quanh trục Ox

8 Mô đun của số phức z=\(\frac{z-17i}{5-i}\) có phần thực là

9 cho số phức z thỏa (1-3i)z=8+6i. Mô đun của z bằng

10 phần thực của phức z thỏa (1+i)^2.(2-i)z=8+i+(1+2i)z la

11 cho zố phức z=-1-2i. điểm biểu diễn của số phức z là

A diểm D B diểm B c điểm C D điểm A

3
NV
8 tháng 5 2020

7.

Thể tích:

\(V=\pi\int\limits^{\frac{\pi}{2}}_0sin^2xdx=\frac{\pi}{2}\int\limits^{\frac{\pi}{2}}_0\left(1-cos2x\right)dx=\frac{\pi}{2}\left(x-\frac{1}{2}sin2x\right)|^{\frac{\pi}{2}}_0=\frac{\pi^2}{4}\)

8.

\(z=\frac{z-17i}{5-i}\Leftrightarrow\left(5-i\right)z=z-17i\)

\(\Leftrightarrow z\left(i-4\right)=17i\Rightarrow z=\frac{17i}{i-4}=1-4i\)

Rốt cuộc câu này hỏi modun hay phần thực vậy ta?

Phần thực bằng 1

Môđun \(\left|z\right|=\sqrt{17}\)

9.

\(\left(1-3i\right)z=8+6i\Rightarrow z=\frac{8+6i}{1-3i}=-1+3i\)

\(\Rightarrow\left|z\right|=\sqrt{\left(-1\right)^2+3^2}=\sqrt{10}\)

10.

\(\left(1+i\right)^2\left(2-i\right)z=8+i+\left(1+2i\right)z\)

\(\Leftrightarrow2i\left(2-i\right)z-\left(1+2i\right)z=8+i\)

\(\Leftrightarrow\left(4i+2-1-2i\right)z=8+i\)

\(\Leftrightarrow z=\frac{8+i}{2i+1}=2-3i\)

Phần thực \(a=2\)

11.

Điểm biểu diễn số phức là điểm có tọa độ \(\left(-1;-2\right)\)

NV
8 tháng 5 2020

4.

\(I=\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{dx}{sin^2x}=-cotx|^{\frac{\pi}{2}}_{\frac{\pi}{4}}=1\)

5.

\(I=\int\limits^a_2\frac{2x-1}{1-x}dx=\int\limits^a_2\left(-2-\frac{1}{x-1}\right)dx=\left(-2x-ln\left|x-1\right|\right)|^a_2=-2a-ln\left|a-1\right|+4\)

\(\Rightarrow-2a+4-ln\left|a-1\right|=-4-ln3\Rightarrow a=4\)

6.

Phương trình hoành độ giao điểm:

\(x^3=x^5\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Diện tích hình phẳng:

\(S=\int\limits^0_{-1}\left(x^5-x^3\right)dx+\int\limits^1_0\left(x^3-x^5\right)dx=\frac{1}{6}\)

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b 2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là 3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng?? 4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là 5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với...
Đọc tiếp

1 biết \(\int\) \(\frac{1}{1+cosx}dx=a.tan\frac{x}{b}+C\) với a,b là các số nguyên. Tính T=a+b

2 biết \(\int_1^5\) f(x) dx=3. Tính D =\(\int_1^5\) [f(x)+2]dx là

3 biết \(\int_0^{\frac{\pi}{2}}e^{sinx}.cosxdx=a.e+b\) , với a,b là các số nguyên a+b bằng??

4 tính diện tích S của hình phẳng giới hạn bởi các đường y=x^4-2x^2+1 và trục hoành là

5 một ô tô đang chạy với vận tốc 36km/h thì tăng tốc chuyển động nhanh dần với gia tốc a(t)=\(1+\frac{t}{3}\)

(m/s^2). tính quãng đường ô tô đi được sau 6 giay kể từ khi ô tô bắt đầu tăng tốc

6 cho số phức z thỏa /z-1/=/(1+i)z/ . Tập hợp biểu diễn số phức z là một đường tròn có tâm và bán kính lần lượt là

7 trong mặt phẳng oxy, cho các điểm A(4;0),B(1;-1).Gọi G là trọng tâm của tam giác ABC .Biết rằng G là điểm biểu diễn số phức z mệnh đề nào dưới đây đúng

A z=\(3+\frac{3}{2}i\) B z=2-i C z=2+i D z=\(3-\frac{3}{2}i\)

8 viết pt mặt cầu S có tâm I(1;-2;5) và tiếp xúc với mp P:x-2y-2z-4=0

9 trong ko gian oxyz, viết pt mặt cầu qua bốn điểm O, A(1;0;0);,B(0;-2;0) ,C(0;0;4)

10 trong ko gian oxyz, cho hai điểm A(1;2;-1) vÀ B(-3;0;-1) . mặt phẳng trung trực của đoạn thằng AB có phương trình là

11 rong ko gian oxyz, đường thẳng d\(\left\{{}\begin{matrix}x=t\\y=1-t\\z=2+t\end{matrix}\right.\) đi qua điểm nào sau đây

A F(0;1;2) B K(1;-1;1) C E(1;1;2) D H(1;2;0)

12 trong ko gian oxyz, cho đường thẳng \(\Delta\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=13-t\end{matrix}\right.\) (t\(\in\)R) . Đường thảng d đi qua A(0;1;-1) cắt và vuông góc với đường thẳng \(\Delta\) .viết phương trình của đường thẳng d

13 trong ko gian oxyz cho điểm A(0;1;-2) . Tọa độ điểm H là hình chiếu vuông góc cũa điểm A trên mp (P):-x-2y+2z-3=0 là

14 trong ko gian với hệ tọa độ oxyz, cho điểm A(2;3;-1) và đường thẳng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\) tọa độ điểm \(A^'\) (A phẩy ) là điểm đối xứng của điểm A qua đường thẳng d là

15 trong ko gian oxyz cho điểm A(4;-3;2).tỌA độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d \(\frac{x+2}{3}=\frac{y+2}{2}\frac{z}{-1}\)

5
NV
23 tháng 5 2020

14.

Pt mp (P) qua A và vuông góc d:

\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)

A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'

Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)

15.

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

PT (P) qua A và vuông góc d:

\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow3x+2y-z-4=0\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)

\(\Rightarrow H\left(1;0;-1\right)\)

NV
23 tháng 5 2020

11.

Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn

12.

Phương trình (P) qua A và vuông góc \(\Delta\):

\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)

Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:

\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)

Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)

13.

Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)

H là giao điểm (P) và d nên tọa độ thỏa mãn:

\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)

\(\Rightarrow H\left(-1;-1;0\right)\)

Câu 2: B

Câu 3: A

23 tháng 2 2019

a)

Tìm được A(0;3); B(0;7)

suy ra I(0;5)

b)

Hoành độ giao điểm J của (d1) và (d2) là nghiệm của PT: x+3 = 3x+7

⇒x = -2 ⇒yJ = 1 ⇒J(-2;1)

Suy ra: OI2 = 02 + 52 = 25; OJ2 = 22 + 12 = 5; IJ2 = 22 + 42 = 20

⇒OJ2 + IJ2 = OI2 ⇒ tam giác OIJ là tam giác vuông tại J

\(\Rightarrow S_{\Delta OIJ}=\dfrac{1}{2}.OJ.IJ=\dfrac{1}{2}.\sqrt{5}.\sqrt{20}=5\left(dvdt\right)\)

ĐÂY LÀ TOÁN LP 9 MÀ