Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2^4\cdot5^2\cdot7}{2^3\cdot5\cdot7^2\cdot11}=\dfrac{2^3\cdot5\cdot10\cdot7}{2^3\cdot5\cdot7\cdot77}=\dfrac{10}{77}\)
\(\dfrac{2^3\cdot3^3\cdot5^3\cdot7\cdot8}{3\cdot2^4\cdot5^3\cdot14}=\dfrac{2^3\cdot3\cdot5^3\cdot7\cdot3^2\cdot8}{3\cdot2^3\cdot2\cdot5^3\cdot14}=\dfrac{7\cdot3^2\cdot8}{2\cdot14}=\dfrac{63\cdot8}{2\cdot14}=18=\dfrac{1386}{77}\)
Ta có :
M= \(\dfrac{3+3-3+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{4+4-4+\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\)= \(\dfrac{3+3-3}{4+4-4}=\dfrac{3}{4}\)
b) Nhận xét thấy: \(\dfrac{2}{1.3}=1-\dfrac{1}{3};\dfrac{1}{3.5}=\dfrac{1}{3}-\dfrac{1}{5};...\)
Ta có:
B= 1-\(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
B= 1- \(\dfrac{1}{101}\)= \(\dfrac{100}{101}\)
Vậy B= \(\dfrac{100}{101}\)
a. \(\dfrac{2^3.5^2.7^2.3^7}{49.5^3.3^6.11}\)
= \(\dfrac{2^3.3}{5.11}=\dfrac{24}{55}\)
b. \(4.\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3\left(\dfrac{-1}{2}\right)+1\)
=\(-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)
= 3\(\left(\dfrac{-1}{2}\right)\)
=\(\dfrac{-3}{2}\)
Ta có:
\(\frac{\left(-2\right)^3.3^3.5^3.7.8}{3.5^3.2^4.42}=\frac{\left(-2\right).\left(-2\right).\left(-2\right).3.3.3.5.5.5.7.2.2.2}{3.5.5.5.2.2.2.2.2.3.7}\)
\(=\frac{\left(-2\right)}{1}=-2\)
2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)
= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)
=1-\(\dfrac{1}{101}\)=...........
mk làm vậy thôi nha
thông cảm
=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)
=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)
tương tự
`(4^2. 5.11)/(44.20)`
`=(4.11.4.5)/(4.11.4.5)`
`=1`
`(13.15.16)/(18.65.7)`
`=(13.15.16)/(2.3.3.13.5.7)`
`=8/21`
`(7.2.8.5^2)/(14.2.5)`
`=(14.2.4.5.5)/(14.2.5)`
`=4.5`
`=20`
`(2^3. 3^3. 5)/(3.2^3. 5^3)`
`=(2^3. 3.5.3^2)/(2^3. 3.5.5^2)`
`=(3^2)/(5^2)`
`=9/25`
**Quy đồng:
`(4^2. 5.11)/(44.20)=1=525/525`
`(13.15.16)/(18.65.7)=8/21=200/525`
`(7.2.8.5^2)/(14.2.5)=20=840/525`
`(2^3. 3^3. 5)/(3.2^3. 5^3)=9/25=189/525`