K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2016

1/2! +2/3! +3/4! +...+99/100! =2−12! +3−13! +4−13! +...+100−1100! 

=22! −12! +33! −13! +44! −14! +...+100100! −1100! 

=11! −12! +12! −13! +13! −14! +...+199! −1100! =1−1100! <1

=> ĐPCM

19 tháng 5 2017

1/2! + 2/3! + 3/4! + ... + 99/100!

<1/1.2 + 1/2.3 + 1/3.4 + ... + 99/99.100 = 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                              = 1 - 1/100 <1

=> 1/2! + 2/3! + 3/4! + ... + 99/100! < 1

3 tháng 3 2020

Ta có:\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\left(đpcm\right)\)

10 tháng 9 2016

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+..+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\left(đpcm\right)\)

19 tháng 12 2015

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+..+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{100!}=1-\frac{1}{100!}<1\left(đpcm\right)\)

tick nhé

13 tháng 12 2015

bỏ dấu chấm than đi

lm xong văn chưa?