K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Ta có : 

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(..........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) (có 100 số \(\frac{1}{200}\) )\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{2}\) (đpcm)

12 tháng 3 2017

Ta có:

1/101>1/200

1/102>1/200

...

1/199>1/200

=>1/101+1/102+...+1/103>1/200+1/200+...+1/200(100 số 1/200)

                                     =1/200.100=1/2

Vậy 1/101+1/102+1/103+...+1/200>1/2

10 tháng 5 2019

Ta có:

\(\frac{1}{101}\)>\(\frac{1}{200}\)

\(\frac{1}{102}\)>\(\frac{1}{200}\)

\(\frac{1}{103}\)>\(\frac{1}{200}\)

...

\(\frac{1}{200}\)=\(\frac{1}{200}\)

\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{200}\)+\(\frac{1}{200}\)+..+\(\frac{1}{200}\)(100 số hạng)=\(\frac{1}{2}\)

\(\Rightarrow\)\(\frac{1}{101}\)+\(\frac{1}{102}\)+\(\frac{1}{103}\)+...+\(\frac{1}{200}\)>\(\frac{1}{2}\)

7 tháng 5 2017

1/2=1/200+1/200+1/200+.....+1/200 (có 100 số )

1/101+1/102+....+1/200(có 100 số )

Vì 1/101>1/200

1/102>1/100

......

1/199>1/200

1/200=1/200

=>1/101+1/102+.....+1/200>1/200+1/200+...+1/200 có 100 số

=>1/101+1/102+.....+1/200>1/2

7 tháng 5 2017

Ta thấy \(\frac{1}{101}>\frac{1}{200};\frac{1}{102}>\frac{1}{200};\frac{1}{103}>\frac{1}{200};....;\frac{1}{200}=\frac{1}{200}\)

Mà dãy \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}\)có 100 phân số nên : 

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)( có 100 phân số \(\frac{1}{200}\))

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{200}.100=\frac{1.}{2}\left(đpcm\right)\)

15 tháng 3 2015

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

31 tháng 3 2015

Vì : 1/101 > 1/300 ;  1/102 > 1/300 .... ; 1/299 >1/300 ;    Do 1/101.....1/300 có 200 số 

=>1/101+1/102+....+1/299+1/300 > 1/300 x 200

                                                 >  2/3

                                                

Ta có : \(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(...>\frac{1}{200}\)

Mà \(\frac{1}{200}=\frac{1}{200}\)

Suy ra : \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\)

Mời nhân tài giải nốt.

11 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{102}\) (đpcm)

23 tháng 3 2017

Ta có:

\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{299}+\dfrac{1}{300}>\dfrac{1}{300}.200=\dfrac{200}{300}=\dfrac{2}{3}\)

\(\Rightarrow\) biểu thức trên lớn hơn \(\dfrac{2}{3}\).