Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nè, bài này mình chỉ làm được hai câu a,b thoi nha
a) Chứng minh: 432 + 43.17 chia hết cho 16
432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60
b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z
n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)
⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6
b) Ta có: \(n^4-n^2=n^2\left(n^2-1\right)=n\cdot n\cdot\left(n-1\right)\cdot\left(n+1\right)\)
*Trường hợp 1: n chia 2 dư 1
\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮2\\n+1⋮2\end{matrix}\right.\)
\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)
hay \(n^4-n^2⋮4\)(1)
*Trường hợp 2: n chia hết cho 2
\(\Leftrightarrow n^2⋮4\)
\(\Leftrightarrow n\cdot n\cdot\left(n-1\right)\left(n+1\right)⋮4\)
hay \(n^4-n^2⋮4\)(2)
Từ (1) và (2) suy ra \(n^4-n^2⋮4\forall n\in N\)(đpcm)
d) Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Ta có: n và n-1 là hai số tự nhiên liên tiếp
\(\Leftrightarrow n\cdot\left(n-1\right)⋮2\)
\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮2\)
\(\Leftrightarrow n^3-n⋮2\)(3)
Ta có: n, n-1 và n+1 là ba số tự nhiên liên tiếp
\(\Leftrightarrow n\cdot\left(n-1\right)\cdot\left(n+1\right)⋮3\)
\(\Leftrightarrow n^3-n⋮3\)(4)
Từ (3), (4) và ƯCLN(3,2)=1 suy ra \(n^3-n⋮3\cdot2\)
hay \(n^3-n⋮6\forall n\in N\)
a) Ta có: \(15^n+15^{n+2}=15^n+15^n\cdot225\)
\(=15^n\cdot\left(1+225\right)=15^n\cdot226=2\cdot15^n\cdot113⋮113\forall n\in N\)
c) Ta có: \(50^{n+2}-50^{n+1}\)
\(=50^n\cdot2500-50^n\cdot50\)
\(=50^n\cdot\left(2500-50\right)=50^n\cdot2450\)
\(=10\cdot50^n\cdot245⋮245\forall n\in N\)(đpcm)
a) Ta có :
\(n^3\)- n = \(n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Mới làm tới đây thôi
Với n = 1, ta có
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6
Giả sử khẳng định đúng với n = k, tức là:
k^3 + 9k^2 + 2k chia hết 6
Đặt k^3 + 9k^2 + 2k = 6Q
Ta sẽ CM khẳng định đúng với n = k + 1, ta có:
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1)
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12
= 6Q + (3k^2 + 21k) + 12
= 6Q + 3k(k + 7) + 12
= 6Q + 3k[(k + 1) + 6] + 12
= 6Q + 3k(k + 1) + 6.3k + 12
Vì k và k + 1 là 2 số nguyên liên tiếp nên:
k(k + 1) chia hết cho 2
=> 3k(k + 1) chia hết cho 3.2 = 6
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6
Vậy theo nguyên lý quy nạp ta chứng minh được
n^3 + 9n^2 + 2n chia hết 6
a, \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\frac{9}{2}=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
\(KL....\)
b, đề hơi sai pn ạ
c, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)chia hết cho 55
d, \(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{50}+5^{51}\)
\(\Rightarrow5A-A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)
a, 2−1.2n+4.2n=9.25
⇒2n.92 =288
⇒2n=64
⇒n=6
KL....
b, đề hơi sai pn ạ
c, 76+75−74=74(72+7−1)=74.55chia hết cho 55
d, A=1+5+52+53+...+549+550
⇒5A=5+52+53+54+...+550+551
⇒5A−A=551−1
⇒A=551−14
1/
$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$
$=(n-1)(n+1)(n+3)$
Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$
$=8k(k+1)(k+2)$
Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.
$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$
$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)
$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.
2/
$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$
$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$
Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$
Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 8k(k+1)\vdots 16$
$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$
Mà $n^4+1\vdots 2$ do $n$ lẻ.
$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$
Hay $B\vdots 512$
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta thấy:
\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Và \(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).