Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
A = 2+21+22+23+...+260
A = 2+2+2.2+2.2.2+........+2.2.2............2
Vì tất cả các số của tổng A là 2=> A chia hết cho 2
b) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)
A = 2.14+ 25.14+..........+256.14
A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7
c) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)
A = 2.30+ 26.30+..........+255.30
A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15
A = 2 + 22 + 23 +...+ 260
A = (2+22) + (23 + 24) + ...+ (259 + 260)
A = 2.(1+2) + 23.(1+2) + ...+ 259.(1+2)
A = 2.3 + 23.3 + ....+ 259.3
A = 3.(2+23 +...+259) chia hết cho 3
..
các bài còn lại bn dựa zô mak lm\
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)
\(A=6\cdot1+2^2\cdot6+...+2^{58}\cdot6\)
\(A=6\cdot\left(1+2^2+...+2^{58}\right)⋮3\)
CMTT
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
A=2+22++23+....+260
A=(2+22) + (23+24) + .......+(259+260)
A=[2.(1+2)] + [23.(1+2)] + ............+ [259.(1+2)]
A= 2.3 + 23.3 +..............+ 259.3
A= ( 2+23+.............+259) . 3
=>A chia hết cho 3
Chia hết cho 3 bạn ghép 2 số
Chia hết cho 7 bạn ghép 3 số
Chia hết cho 15 bạn ghép 4 số
\(A=2+2^2+2^3+....+2^{60}\)
\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2+2^3\right)+....+2^{57}.\left(1+2+2^2+2^3\right)\)
\(A=2.15+.....+2^{57}.15\)
\(A=15.\left(2+.......+2^{57}\right)\)
Do \(15⋮15\)
\(\Rightarrow15.\left(2+.....+2^{57}\right)⋮15\)
\(\Rightarrow A⋮15\)
Ta có:
A = 2 + 22 + 23 + ... + 260
A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
A = 2 . (1 + 2 + 22 + 23) + 25 . (1 + 2 + 22 + 23) + ... + 257 . (1 + 2 + 22 + 23)
A = 2 . 15 + 25 . 15 + ... + 257 . 15
A = 15 . (2 + 25 + ... + 257)
Vì 15 . (2 + 25 + ... + 257) chia hết cho 15 nên A chia hết cho 15.
31 + 32 + 33 + ... + 360
= ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 358 + 359 + 360 )
= 3 ( 1 + 3 + 32 ) + 34 ( 1 + 3 + 32 ) + ... + 358 ( 1 + 3 + 32 )
= ( 1 + 3 + 32 ) ( 3 + 34 + ... + 358 )
= 13 ( 3 + 34 + ... + 358 )\(⋮\)13 ( đpcm )