K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2014

(3^2+3^3+3^4)+...+(3^98+3^99+3^100)=13.3^2+....+13.3^98=13.(3^2+...+3^98)chia het cho 13

 

 

 

 

16 tháng 9 2017

Đặt $x=\sqrt[3]{3+2\sqrt{2}},y=\sqrt[3]{3-2\sqrt{2}}$
$\Rightarrow \left\{\begin{matrix} x^{3}+y^{3}=6\\xy=1 \end{matrix}\right.$
$\Rightarrow (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)=6+3xy=3[1+1+(x+y)]> 3.3\sqrt[3]{1.1.(x+y)}$
(Vì x>1,y>0=>x+y>1)
Do đó: $(x+y)^{3}> 3^{2}.\sqrt[3]{x+y}$
$\Rightarrow (x+y)^{9}>3^{6}.(x+y)$
$\Rightarrow (x+y)^{8}>3^{6}$
=>đpcm

23 tháng 12 2015

dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay

se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)

=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13 

vậy M chia hết cho 13

tick cho mình nhé!

24 tháng 12 2020
M= 1+3+3^2+3^3+...+3^98+3^99+3^100 M= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100) M= (1+3+3^2)+3^3(1+3+3^2)+...+3^98(1+3+3^2) M= 13+3^3.13+...+3^98.13 M= 13(3^3+...+3^98) Do 13 chia hết cho 13 nên M chia hết cho 13
15 tháng 8 2021

M=1+3+3^2+3^3+...+3^98+3^99+3^100

M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

M=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy M chia hết cho 13

HT

*Sửa đề*

M = 1 + 3 + 32  +....+ 3100

M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)

M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)

M = 13 . 1 + 13 . 33+ ...... + 13 . 398

M = 13 . ( 1 + 33 +....+ 398)

=> M chia hết cho 13

26 tháng 12 2016

\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(\Rightarrow A=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(\Rightarrow A=\left(1-3+9-27\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(\Rightarrow A=-20+...+3^{96}.\left(-20\right)\)

\(\Rightarrow A=\left(-20\right).\left(1+...+3^{96}\right)⋮4\)

\(\Rightarrow A⋮4\)

Vậy \(A⋮4\)

30 tháng 12 2016

A=1-3+32-33+34-35+36-37+...+398-399

=(1-3+32-33)+(34-35+36-37)+...+(396-397+398-399)

=(1-3+32-33)+34(1-3+32-33)+...+396(1-3+32-34

=(1-3+32-33) (1+34+...+396)

=-20 (1+34+...+396):4 vì 20:4

Vậy A:4

12 tháng 5 2016

Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)

                \(=\left(3+3^2+3^3+3^4+3^5\right)\)

6 tháng 1 2018

A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)

   = 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)

   = 120+3^4.110+....+3^96.120

   = 120.(1+3^4+.....+3^96) chia hết cho 120

=> ĐPCM

Tk mk nha

6 tháng 1 2018

ta co A=(31+32+33+34)+...+(397+398+399+3100)

tớ gợi ý nhiêu đây thôi

12 tháng 7 2018

Ta có

\(A=3+3^2+3^3+3^4+3^5+.....+3^{96}+3^{97}+3^{98}+3^{99}+3^{100}\)

\(A=\left(3+3^2+3^3+3^4+3^5\right)+....+\left(3^{96}+3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(A=363+....+3^{95}.363\)

Vì 363⋮121⇒A⋮121

27 tháng 10 2020

a) P = 1 + 3 + 32 + ... + 398

= (1 + 3 + 32) + (33 + 34 + 35) + ... (396 + 397 + 398)

= 1 (1 + 3 + 32) + 33 (1 + 3 + 32) + ... + 396 (1 + 3 + 32)

= 13 + 33 . 13 + ... + 396 . 13

= 13 (1 + 33 + ... + 396)

Vì 13 chia hết cho 13 nên 13 (1 + 33 + ... + 396) chia hết cho 13

hay P chia hết cho 13 (đpcm)

b) Ta có: P = 1 + 3 + 32 + ... + 398

=> 3P = 3 + 32 + 33 + ... + 399

=> 3P - P = 3 + 32 + 33 + ... + 399 - 1 - 3 - 32 - ... - 398

2P = 399 - 1 = 33 . (34)24 - 1 = 27 . (...1) - 1 = ...7 - 1 = ...6

=> P có chữ số tận cùng là 2 hoặc 8

Mà số chính phương không có tận cùng là 2 hoặc 8

=> P không phải là số chính phương (đpcm)

27 tháng 10 2020

cảm ơn bạn nhiều nha Triệu Linh Chi

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

27 tháng 1 2016

1-3+3^2-3^3+...+3^98-3^99=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)

=-20+3^4.(1-3+3^2-3^3)+...+3^96.(1-3+3^2-3^3)

=-20+3^4.(-20)+...+3^96.(-20)

=-20.(1+3^4+...+3^96)

=-5.4.(1+3^4+...+3^96)

=>1-3+3^2-3^3+...+3^98-3^99 chia  hết cho 4