K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay

se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)

=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13 

vậy M chia hết cho 13

tick cho mình nhé!

24 tháng 12 2020
M= 1+3+3^2+3^3+...+3^98+3^99+3^100 M= (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100) M= (1+3+3^2)+3^3(1+3+3^2)+...+3^98(1+3+3^2) M= 13+3^3.13+...+3^98.13 M= 13(3^3+...+3^98) Do 13 chia hết cho 13 nên M chia hết cho 13
15 tháng 8 2021

M=1+3+3^2+3^3+...+3^98+3^99+3^100

M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

M=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy M chia hết cho 13

HT

*Sửa đề*

M = 1 + 3 + 32  +....+ 3100

M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)

M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)

M = 13 . 1 + 13 . 33+ ...... + 13 . 398

M = 13 . ( 1 + 33 +....+ 398)

=> M chia hết cho 13

4 tháng 4 2016

M=1+3+32+33+34+...+398+399+3100

M=(1+3+32)+(33+34+35)+...+(398+399+3100)

M=(1+3+32)+33(1+3+32)+...+398(1+3+32)

M=13+33.13+...+398.13

M=13(1+33+...+398) chia hết cho 13

=> M chia cho 13 dư 0

Vậy M chia cho 13 dư 0

19 tháng 12 2021

sai rồi bạn

4 tháng 3 2018

Ta có\(M=\left[\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\right].2.3...98\)

\(=\left[\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}\right].2.3...98=99\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).2.3...98\)

\(=99\left(\frac{k_1+k_2+...+k_{49}}{1.2.3...98}\right).2.3...98\left(k_1,k_2...k_{49}\varepsilonℕ^∗\right)=99\left(k_1+k_2+...+k_{49}\right)⋮99\Rightarrow M⋮99\left(đpcm\right)\)

28 tháng 12 2014

(3^2+3^3+3^4)+...+(3^98+3^99+3^100)=13.3^2+....+13.3^98=13.(3^2+...+3^98)chia het cho 13

 

 

 

 

16 tháng 9 2017

Đặt $x=\sqrt[3]{3+2\sqrt{2}},y=\sqrt[3]{3-2\sqrt{2}}$
$\Rightarrow \left\{\begin{matrix} x^{3}+y^{3}=6\\xy=1 \end{matrix}\right.$
$\Rightarrow (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)=6+3xy=3[1+1+(x+y)]> 3.3\sqrt[3]{1.1.(x+y)}$
(Vì x>1,y>0=>x+y>1)
Do đó: $(x+y)^{3}> 3^{2}.\sqrt[3]{x+y}$
$\Rightarrow (x+y)^{9}>3^{6}.(x+y)$
$\Rightarrow (x+y)^{8}>3^{6}$
=>đpcm

12 tháng 5 2016

Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)

                \(=\left(3+3^2+3^3+3^4+3^5\right)\)

2 tháng 1 2019

bai mac re ma khong lam dc tao chiu bay can tao giang khong

27 tháng 1 2016

1-3+3^2-3^3+...+3^98-3^99=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)

=-20+3^4.(1-3+3^2-3^3)+...+3^96.(1-3+3^2-3^3)

=-20+3^4.(-20)+...+3^96.(-20)

=-20.(1+3^4+...+3^96)

=-5.4.(1+3^4+...+3^96)

=>1-3+3^2-3^3+...+3^98-3^99 chia  hết cho 4

6 tháng 1 2018

A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)

   = 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)

   = 120+3^4.110+....+3^96.120

   = 120.(1+3^4+.....+3^96) chia hết cho 120

=> ĐPCM

Tk mk nha

6 tháng 1 2018

ta co A=(31+32+33+34)+...+(397+398+399+3100)

tớ gợi ý nhiêu đây thôi

13 tháng 3 2016

Tính một lúc ta được M=1+2+3+...+98

\(M=\left(1+98\right)+\left(2+97\right)+...\left(49+50\right)\)

\(M=99+99+99+...+99\)

Vậy M chia hết cho 99

Ai tích mk mk tích lại cho

Tìm 2M rồi trừ cho M sẽ ra kết quả

Mình giải cho đợi tí