K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

Đáp án D

Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.

3 tháng 3 2017

Đáp án: D

Các bước giải bài toán trên đều đúng.

3 tháng 5 2019

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
25 tháng 7 2017

Đề bài là gì vậy,Tìm n hay chứng minh?

25 tháng 7 2017

Chứng minh bạn

5 tháng 6 2016

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .


 

5 tháng 6 2016

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*  



 

AH
Akai Haruma
Giáo viên
14 tháng 1 2018

Lời giải:

Điều phải chứng minh tương đương với việc tồn tại vô số số $n$ sao cho \(p|2^n-n\) với mọi \(p\in\mathbb{P}\)

Ta sẽ chỉ là một dạng tổng quát của $n$

------------------------------------------

Vì theo định lý Fermat nhỏ ta \(2^{p-1}\equiv 1\pmod p\)

\(\Leftrightarrow p|2^{p-1}-1\)

Do đó đặt \(n=k(p-1)\)

Khi đó \(2^n-n=2^{k(p-1)}-k(p-1)\equiv 1+ k\pmod p\)

Để \(p|2^n-n\Rightarrow 1+k\equiv 0\pmod p\Leftrightarrow k=pt-1\)

Vậy \(p|2^{(pt-1)(p-1)}-(pt-1)(p-1)\forall p\in \mathbb{P}\)

Nghĩa là tồn tại vô hạn số n có dạng \((pt-1)(p-1)\) với $t$ là số tự nhiên nào đó thỏa mãn điều kiện đề bài.

Ta có đpcm.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học