Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, TC: \(\frac{5x^2-4x+4}{x^2}=\frac{4x^2+x^2-4x+4}{x^2}\)\(=\frac{4x^2}{x^2}+\frac{\left(x-2\right)^2}{x^2}=4+\frac{\left(x-2\right)^2}{x^2}\)
Ta có \(\frac{\left(x-2\right)^2}{x^2}\ge0\forall x\left(x\ne0\right)\)\(\Rightarrow4+\frac{\left(x-2\right)^2}{x^2}\ge4\)
Vậy GTNN của A là 4 tại \(\frac{\left(x-2^2\right)}{x^2}=0\Rightarrow x=2\)
câu 1,
a, 2(m-1)x +3 = 2m -5
<=> 2x (m-1) - 2m +8 = 0 (1)
Để PT (1) là phương trình bậc nhất 1 ẩn thì: m - 1 \(\ne\)0 <=> m\(\ne\)1
b, giải PT: 2x +5 = 3(x+2)-1
<=> 2x + 5 -3x -6 + 1 =0
<=> -x = 0
<=> x = 0
Thay vào (1) ta được: -2m + 8 =0
<=> -2m = -8
<=> m = 4 (t/m)
vậy m = 4 thì pt trên tương đương.................
C nhé
Vì;Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.
NHỚ K NHA
Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.
chọn C
HS tự chứng minh.