Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng A có 8 số hạng, mỗi số là lẻ nên A chẵn
b) A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78(có 8 số; 8 chia hết cho 2)
A = (7 + 73) + (72 + 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
A = (...0) chia hết cho 5
A) 52018 + 52017 + 52016 = 52016 . (52 + 5 + 1) = 52016 . (25 + 5 + 1) = 52016 . 31
Vì 31 chia hết cho 31 => 52016 . 31 chia hết cho 31
hay 52018 + 52017 + 52016 chia hết cho 31
a,52018+52017+52016=52016(1+5+52)=52016.31
=>52018+52017+52016 chia hết cho 31.
b,1+7+72+73+ ....+7101
=(1+7)+(72+73)+...+(7100+7101)
=1.(1+7)+72.(1+7)+...+7100.(1+7)
=8.(1+72+...+7100)
=>1+7+72+...+7101 chia hết cho 8.
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}.\left(9-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45\)Chia hết cho 45
Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)
Ta có:
\(A=1+5+5^2+...+5^{2013}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)
\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)
\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)
Vì \(31⋮31\)
\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)
hay\(A⋮31\) (đpcm)
Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà