Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1 + 2 + 3 + ... + n = \(\dfrac{n\left(n+1\right)}{2}\)
Giả sử [(1 + 2 + 3 + ... + n) - 7 ] \(⋮10\)
=> \(\dfrac{n\left(n+1\right)}{2}-7⋮10\)
=> \(\dfrac{n\left(n+1\right)}{2}=\overline{...7}\)
Mà \(\dfrac{n\left(n+1\right)}{2}\) không bao giờ tận cùng bằng 7
=> \(\dfrac{n\left(n+1\right)}{2}-7\) không chia hết cho 10
=> [(1 + 2 + 3 + ... + n) - 7] không chia hết cho 10
=> đpcm
@An Le
a)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=1\cdot13+...+3^9\cdot13\)
\(=13\cdot\left(1+...+3^9\right)⋮13\)
b)\(S=1+3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=1\cdot40+...+3^8\cdot40\)
\(=40\cdot\left(1+...+3^8\right)⋮40\)
c)\(S=1+3+...+3^{11}\)
\(3S=3\left(1+3+...+3^{11}\right)\)
\(3S=3+3^2+...+3^{12}\)
\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)
\(2S=3^{12}-1\)
\(S=\frac{3^{12}-1}{2}\)
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
A=(1+2)+(2^2+2^3)+....+(2^2018+2^2019)
A=(1+2) + 2^2(1+2)+ +(2^2018(1+2)
a=3.1+2^2 x 3 +.......+2^2018x3
A=3(1+2^2+....+2^2018) chia hết cho 3 (vì 3 nhân với số nào cũng chia hết cho 3)
=>A chia hết cho 3
a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)
\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)
b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)
\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)
2. a) \(7^2=49\equiv-1\left(mod5\right)\)
\(\Rightarrow\left(7^2\right)^{6n}\equiv\left(-1\right)^{6n}\left(mod5\right)\)
\(\Rightarrow7^{12n}\equiv1\left(mod5\right)\Rightarrow7^{12n}-1⋮5\)
b) + \(12^2=144\equiv-1\left(mod5\right)\)
\(\Rightarrow12^{4n}\equiv1\left(mod5\right)\Rightarrow12^{4n+1}\equiv2\left(mod5\right)\) (1)
+ \(3^2\equiv-1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)
\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\) (2)
+ Từ (1) và (2) \(\Rightarrow12^{4n+1}+3^{4n+1}⋮5\)
c) \(9\equiv-1\left(mod10\right)\Rightarrow9^{2019}\equiv\left(-1\right)^{2019}\left(mod10\right)\)
\(\Rightarrow9^{2019}+4\equiv-1+4=-3\left(mod10\right)\)
=> \(9^{2014}+4\) chia 10 dư 7
Lời giải:
\(432\equiv 32\pmod {100}\Rightarrow 432^{2019}\equiv 32^{2019}\equiv 2^{5.2019}\pmod{100}\)
Lại có:
\(2^{10}\equiv 24\equiv -1\pmod {25}\)
\(\Rightarrow 2^{5.2019}=(2^{10})^{1009}.2^5\equiv (-1)^{1009}.2^5\equiv 18\pmod {25}\)
Đặt \(2^{5.2019}=25k+18\).
Vì $2^{5.2019}$ chẵn nên $k$ chẵn (1)
Vì $2^{5.2019}$ chia hết cho $4$ nên $25k+18$ chia hết cho $4$. Mà $18$ không chia hết cho $4$ nên $k$ không chia hết cho $4$ (2)
Từ (1);(2) suy ra $k$ có dạng $4t+2$
Khi đó $2^{5.2019}=25(4t+2)+18=100t+68\equiv 68\pmod{100}$
\(\Rightarrow 432^{2019}\equiv 2^{5.2019}\equiv 68\pmod {100}\) hay số đã cho có tận cùng là $68$
1)
\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)
\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)
Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3
=> 3.7.(n+1)n chia hết cho 6
=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6
2)
\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)
Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
12n chia hết cho 6
=>\(n^3-13n\) chia hết cho 6
3)
\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)
\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3
a, 23 + (-2)3+ 8-1
= 8 + (-8)+ 1/8
= 0 +1/8
= 1/8
b, (-1)2019 + (-1)2020
= (-1) + 1
= 0
c,(-3)4 +23
= 81 + 8
= 89
d, 1252 : 25
= (25x5)2 : 25
= 252 x 52 : 25
= (252:25) x 52
= 25 x 25
= 625
=
a) \(2^3+\left(-2\right)^3+8^{-1}=2^3-2^3+\frac{1}{8}\)
\(=\frac{1}{8}\)
b) \(\left(-1\right)^{2019}+\left(-1\right)^{2020}=-1+1\)
\(=0\)
c) \(\left(-3\right)^4+2^3=81+8\)
\(=90\)
d) \(125^2\div25=\frac{\left(25.5\right)^2}{25}\)
\(=\frac{25^2.5^2}{25}\)
\(=25.25\)
\(=625\)
1/
a/ Hai số nguyên liên tiếp bao giờ cũng có 1 số chẵn và 1 số lẻ nên 2 số nguyên liên tiếp bao giờ cũng có 1 số chẵn chia hết cho 2
b/ Gọi 3 số nguyên liên tiếp là n; n+1, n+2
+ Nếu n chia hết cho 3 thì n+1 chia 3 dư 1 và n+2 chia 3 dư 2
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 còn n+1 chia 3 dư 2
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 còn n+2 chia 3 dư 1
Nên trong 3 số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c/ Trong 2 số nguyên liên tiếp chỉ có 1 số duy nhất chia hết cho 2. Trong 3 số nguyên liên tiếp chỉ có duy nhất 1 số chia hết cho 3 nên tích của chúng chia hết cho 6
2
a/ a-b chia hết cho 5
=> a-b-5b có a-b chia hết cho 5 và 5b chia hết cho 5 nên a-b-5b=a-6b chia hết cho 5
b/ Ta có a-6b+a-b có a-6b chia hết cho 5 (câu a) và a-b chia hết cho 5 (đề bài) nên a-6b+a-b=2a-7b chia hết cho 5
c/ Ta có (a-b)+(25a-15b+2000) có a-b chia hết cho 5 (đề bài) và 25a-15b+2000 chia hết cho 5 nên a-b+25a-15b+2000=26a-21b+2000 chia hết cho 5
Ghi lại đề: \(A=3+3^2+...+3^{2020}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\\ A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\\ A=\left(1+3+3^2+3^3\right)\left(3+...+3^{2017}\right)\\ A=40\left(3+...+3^{2017}\right)⋮10\left(40⋮10\right)\)